跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/14 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳元培
研究生(外文):Yuan-Peir Chen
論文名稱:以基因演算法設計完美重建濾波器組
論文名稱(外文):Design of Perfect Reconstruction Filter Banks based on Genetic Algorithm
指導教授:黃依賢黃依賢引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:49
中文關鍵詞:有限脈衝響應線性相位完美重建濾波器組CSD GA
外文關鍵詞:FIRLinear PhasePerfect ReconstructionFilter BanksCSD GA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出使用CSD編碼方式設計出近似於完美重建之有限脈衝響應且具有線性相位的濾波器組。所設計的濾波器組同時考慮其重建誤差與濾波器之Equiripple特性。在論文中,以CSD編碼方式為基底的CSD GA,搜尋CSD濾波器係數,且係數在一定的非零值個數限制之下,非常適合於硬體電路實踐。三個實驗模擬結果證實所提之方法確實有效且可執行。
In this thesis, a new approach for two-channel FIR linear phase filter banks with canonical signed digit and near perfect-reconstruction properties is presented. The considered problem includes both the perfect-reconstruction error and the analysis filters with equiripple. Applying the CSD GA, the coefficient of the analysis filters satisfies canonical signed digit number system. The coefficient of the analysis filters with the property of no consecutive nonzero digits is very simple to implement an FIR filter banks in hardware. Three design examples are provided for illustration and comparison. The simulation results are presented to demonstrate the effectiveness of this proposed design technique.
書名頁-------------------------------------------------------------------------------------------- i
摘要----------------------------------------------------------------------------------------------- ii
Abstract------------------------------------------------------------------------------------------ iii
誌謝---------------------------------------------------------------------------------------------- iv
目錄----------------------------------------------------------------------------------------------- v
圖目錄------------------------------------------------------------------------------------------ vii
表目錄------------------------------------------------------------------------------------------- ix
第一章、緒論 1
1.1 研究動機----------------------------------------------------------------------- 1
1.2 研究目的----------------------------------------------------------------------- 5
1.3 Powers-of -two編碼系統--------------------------------------------------- 5
1.4 CSD編碼系統---------------------------------------------------------------- 6
1.5 論文組織架構----------------------------------------------------------------- 7
第二章、數位濾波器與線性相位FIR完美重建次頻帶濾波器組 8
2.1 數位濾波器簡介-------------------------------------------------------------- 8
2.2 線性相位濾波器特性------------------------------------------------------- 11
2.3 線性相位FIR完美重建次頻帶濾波器組------------------------------- 13
第三章、基因演算法 18
3.1 基因演算法簡介------------------------------------------------------------- 18
3.2 二位元型基因演算法------------------------------------------------------- 20
3.2.1 編碼與解碼------------------------------------------------------- 20
3.2.2 適應函數---------------------------------------------------------- 21
3.2.3 選擇與淘汰------------------------------------------------------- 22
3.2.4 交配---------------------------------------------------------------- 23
3.2.5 突變---------------------------------------------------------------- 24
3.3 參數設定---------------------------------------------------------------------- 25
第四章、使用CSD GA設計線性相位FIR完美重建次頻帶濾波器組 27
4.1 CSD GA----------------------------------------------------------------------- 27
4.2 適應函數設計---------------------------------------------------------------- 28
4.3 CSD編碼/解碼方式--------------------------------------------------------- 28
4.4 交配---------------------------------------------------------------------------- 30
4.5 突變---------------------------------------------------------------------------- 31
4.6 CSD GA流程---------------------------------------------------------------- 32
第五章、實驗模擬 34
5.1 實驗評估---------------------------------------------------------------------- 34
5.2 實驗數據---------------------------------------------------------------------- 35
5.2.1 範例一------------------------------------------------------------- 35
5.2.2 範例二------------------------------------------------------------- 38
5.2.3 範例三------------------------------------------------------------- 41
第六章、結論 44
參考文獻 46
[1]G. Lakhani, “Modified JPEG Huffman coding,” IEEE Transactions on Image Processing, vol. 12, no. 2, pp. 159-169, Feb. 2003.
[2]D. H. Kang, J. H. Choi, Y. H. Lee, and C. Lee,” Applications of a DPCM system with median predictors for image coding,” IEEE Transactions on Consumer Electronics, vol. 38, no. 3, pp. 429-435, Aug. 1992.
[3]R. Gray, “Vector quantization,” IEEE ASSP Magazine, vol. 1, no. 2, pp. 4-29, Apr. 1984.
[4]L.J. Wang, and J.J. Leou, “Detection and correction of transmission errors in pyramid images,” IEEE Transactions on Circuits and System for Video Technology, vol. 8, no. 1, pp. 25-30, Feb. 1998.
[5]J. Woods, and S. O''Neil, “Subband coding of images,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 5, pp. 1278-1288, Oct. 1986.
[6]G.K. Wallace, “The JPEG still picture compression standard,” IEEE Transactions on Consumer Electronics, vol. 38, no. 1, pp. xviii - xxxiv, Feb. 1992.
[7]M. Liou, “Overview of the p×64 kbit/s video coding standard,” Communication of the ACM, vol. 34, no. 4, pp. 59-63, Apr. 1991.
[8]T. Sikora, “MPEG digital video-coding standards,” IEEE Transactions on Signal Processing Magazine, vol. 14, no. 5, pp. 82-100, Sept. 1997.
[9]G.L. Chen, J.S. Pan, and J.L. Wang, ”Video encoder architecture for MPEG2 real time encoding,” IEEE Transactions on Consumer Electronics, vol. 42, no. 3, pp. 290 – 299, Aug. 1996.
[10]A.V. Oppenheim, and R.W. Schafer, Discrete-time Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1989.
[11]S.K. Mitra, Digital Signal Processing : A Computer Based Approach, Second Edition, McGraw-Hill, 2001.
[12]M.L. Honig, and D.G. Messerschmitt, Adaptive Filters: Structures, Algorithms, and Applications, Kluwer Academic Publishers, 1984.
[13]R. Crochiere, and L. Rabiner, “Optimum FIR digital filter implementations for decimation, interpolation, and narrow-band filtering,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 23, no. 5, pp. 444-456, Oct. 1975.
[14]P.P. Vaidyanathan, “Quadrature mirror filter banks, M-band extensions and perfect-reconstruction techniques,” IEEE ASSP Magazine, vol. 4, no. 3, Part 1, pp. 4-20, Jul. 1987.
[15]E.S. Brigham, The Fast Fourier Transform, Englewood Cliffs, NJ: Prentice-Hall, 1974.
[16]J.W. Cooley, “How the FFT gained acceptance,” IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 10-13, Jan. 1992.
[17]R.E. Crochiere, S.A. Webber, and J.L. Flanagan, “Digital coding of speech in subbands,” Bell System Technology Journal, vol. 55, pp. 1069-1085, Oct. (1976).
[18]B.R. Horng, and A.N. Willson, Jr., “Lagrange Multiplier Approaches of the Design of Two-Channel Perfect-Reconstruction Linear-Phase FIR Filter Banks,” IEEE Transactions on Signal Processing, vol. 40, no. 2, pp. 364-374, Feb. 1992.
[19]J.D. Johnston, “A filter family designed for use in quadrature mirror filter banks,” IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 5, pp. 291-294, Apr. 1980.
[20]R.H. Bamberger, M.J.T. Smith, “A filter bank for the directional decomposition of images: theory and design,” IEEE Transactions on Signal Processing, vol. 40, no. 4, pp. 882-893, Apr. 1992.
[21]T.Q. Nquyen and P.P. Vaidyanathan, “Two-channel perfect reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters,” IEEE Transactions on Acoustic, Speech and Signal Processing, vol. 37, no. 5, pp. 676-690, May 1989.
[22]S.J. Yang, J.H. Lee, and B.C. Chieu, “Perfect-reconstruction filter banks having linear-phase FIR filters with equiripple response,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 46, no. 12, pp. 3246-3255, Dec. 1998.
[23]Y.C. Lim and S.R. Parker, “FIR filter design over a discrete powers-of-two coefficient space,” IEEE Transactions on Acoustic, Speech and Signal Processing, vol. 31, no. 3, pp. 583-591, Jun. 1983.
[24]C.K. Chen, “New approaches for the design of minimax quadrature mirror filters with continuous and powers-of-two coefficients,” Signal processing, vol. 56, pp. 269-278, 1997.
[25]B.R. Horng, H. Samueli, and A.N. Willson, Jr., “The design of low-complexity linear-phase FIR filter banks using powers-of-two coefficients with an application to subband image coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, no. 4, pp. 318-324, Dec. 1991.
[26]Y.H. Lee, Kawamata M. and Higuchi T., “Design of 2-D state-space digital filters with powers-of-two coefficients based on a genetic algorithm,” IEEE International Conference on Image Processing, vol. 2, pp. 23-26, Oct. 1995.
[27]W. J. Oh, and Y. H. Lee, ”Implementation of programmable multiplierless FIR filters with powers-of-two coefficients,” IEEE Transactions on Circuits and System-II, Analog and Digital Signal Processing, vol. 42, no. 3, pp. 553-556, Aug. 1995.
[28]J.H. Holland, “Adaptation in Natural and Artificial Systems,” Ann Arbor, MI: The University of Michigan Press, 1975.
[29]R. Chandrasekharam, S. Subhramanian, and S. Chaudhury, “Genetic algorithm for node partitioning problem and applications in VLSI design,” IEE Proceedings on Computers and Digital Techniques, vol. 140, no. 5, pp. 255-260, Sep. 1993.
[30]C.L. Valenzuela, and P.Y. Wang, “VLSI placement and area optimization using a genetic algorithm to breed normalized postfix expressions,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 4, pp. 390-401, Aug. 2002.
[31]P.P. Palmes, T. Hayasaka, and S. Usui, “Mutation-based genetic neural network,” IEEE Transactions on Neural Networks, vol. 16, no. 3, pp. 587-600, May 2005.
[32]M. Aurnhammer, and K.D. Tonnies, “A genetic algorithm for automated horizon correlation across faults in seismic images,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 2, pp. 201-210, Apr. 2005.
[33]M. Venere, H. Liao, and Clausse A., “A genetic algorithm for adaptive tomography of elliptical objects,” IEEE Signal Processing Letters, vol. 7, no. 7, pp. 176-178, Jul. 2000.
[34]Y.G. Wu, “GA-based DCT quantisation table design procedure for medical images,” IEE Proceedings on Vision, Image and Signal Processing, vol. 151, no. 5, pp. 353-359, Oct. 2004.
[35]D.G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, 1984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top