(44.192.10.166) 您好!臺灣時間:2021/03/05 09:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐泰詮
研究生(外文):Tai-Chuan Hsu
論文名稱:以視覺為基礎之道路交叉路口車輛事故自動偵測系統
論文名稱(外文):A Vision-based System for Car Accidents Detection at Intersections
指導教授:林啟芳
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:49
中文關鍵詞:影像處理智慧型運輸系統移動物體追蹤事件偵測
外文關鍵詞:image processingincident detectionintelligent transport systemtarget tracking
相關次數:
  • 被引用被引用:2
  • 點閱點閱:163
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
隨著車用市場的平價及普及,路上行駛車輛的密度已經越來越高,不過隨之而來的是交通事故高頻率的發生,特別是交叉路口。因此道路監控系統需求與日俱增,如果可以在第一時間偵測事故的發生,不僅僅對交通安全有大大的幫助,更能迅速的舒緩發生交通意外處的擁塞。本論文的目的是基於研究智慧型運輸系統中,發展一套系統可自動在交叉路口監控每輛車輛的情況,並分析可能發生的事件。我們利用一部個人電腦來擷取交叉路口所拍攝到的畫面,並透過擬提方法來分析畫面,找出畫面中所有的移動車輛,標示出移動車輛,並作追蹤,取得移動車輛的資訊後,最後透過車輛的相對關係以及其行車的軌跡,利用不斷預測的方法,將交通的事件可能性表示出來。
實驗結果顯示,根據擷取一般道路交叉路口的車流影像,並利用本文所提出的方法來偵測,我們的方法是準確且有效的。
As the result of cars is available to all, there are many cars of highly density on road. Unfortunately, conveniences of traffic bring more and more traffic event, especially at intersections. If we could do incident detection immediately, it must be a great help to traffic safety, and release traffic jam around the scene. Our goal is to establish a system that monitoring each car pass through intersection and analyze all possible events which is based on Intelligent Transport System. First of all, we extract a lot of frame at intersection by PC and use our method to analyze the frame. Second, we do Target tracking in frame and mark them. Third, we will track the cars marked and get the information of them. Forth, according to their relationships and trajectories, we use the method of recursive predict to present all the possible traffic events.
According to our method to do Pattern recognition, Experimental results shows that our method is effective and accurate.
書名頁……………………………………i
中文摘要…………………………………ii
ABSTRACT…………………………………iii
致謝………………………………………iv
目錄………………………………………v
圖目錄……………………………………viii
表格目錄…………………………………x
第1章、前言………………………………1
1.1背景與研究動機………………………1
1.2研究目的………………………………2
1.3相關研究………………………………3
1.4論文架構………………………………7
第2章、基本概念…………………………8
2.1前言……………………………………8
2.2硬體及軟體架構………………………8
2.2.1硬體架構……………………………8
2.2.2軟體架構……………………………9
第3章、方法………………………………11
3.1前言……………………………………11
3.2從連續影片中擷取出車輛物件………11
3.2.1產生背景……………………………11
3.2.2畫格相減法…………………………14
3.2.3連通區域運算………………………15
3.3從連續影片中作車輛的追蹤…………17
3.3.1產生車輛的編號……………………18
3.3.2移動車輛之判斷……………………19
3.3.3車輛重疊問題………………………23
3.4事故的判定……………………………25
3.4.1障礙物、停止車輛…………………26
3.4.2車禍事故……………………………27
3.4.3危險度模糊化………………………29
第4章、實驗結果及討論…………………36
4.1實驗環境介紹…………………………36
4.2實驗結果說明…………………………37
第5章、結論與未來工作…………………45
5.1結論……………………………………45
5.2未來的發展……………………………45
參考文獻 …………………………………47
[1]R. Gangisetty, “Advanced traffic management system on I-476 in Pennsylvania,” Proc. IEEE ITS Conference, pp. 373–378, 1997.
[2]J. C. Rojas and J. D. Crisman, “Vehicle detection in color images,” Proceedings of IEEE ITS Conference, pp. 403–408, 1997.
[3]N. Zeng and J. D. Crisman, “Vehicle matching using color,” Proceedings of IEEE ITS Conference, pp. 206–211, 1997.
[4]A. H. S. Lai and N. H. C. Yung, “A video-based system methodology for detecting red light runners,” Proceedings of IAPR Workshop on MVA, pp. 23–26, 1998.
[5]S. Pumrin, “A framework for dynamically measuring mean vehicle speed using un-calibrated cameras,” Intelligent Transportation Systems Laboratory Department of Electrical Engineering University of Washington, December 2001.
[6]K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower : principles and practice of background maintenance,” Proceedings of IEEE International Conference on Computer Vision, pp. 255–261, September 1999.
[7]S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, “Traffic monitoring and accident detection at intersections,” Intelligent Transportation Systems, IEEE Transactions, Vol. 1, Issue 2, pp. 108-118, June 2000.
[8]D. Gutchess, M. Trajkovic, E. Cohen-Solal, D. Lyons, and A. K. Jain, “A background model initialization algorithm for video surveillance,” Proceedings Eighth IEEE International Conference, Vol. 1, pp. 733-740, July 2001.
[9]B. K. P. Horn and B. G. Schunck, Determining optical flow, AI Memo 572, Massachusetts Institue of Technology, 1980
[10]C. P. Lin, J. C. Tai, and K. T. Song, “Traffic monitoring based on real-time image tracking,” Robotics and Automation, 2003. Proceedings. ICRA ''03. IEEE International Conference, Vol. 2, pp. 2091-2096, September 2003.
[11]H. Veeraraghavan and O. Masoud, “Real-time tracking for managing suburban intersections,” Signal Processing, Vol. 66, pp. 203-217, April 1998.
[12]W. Hu and T. Tan, “A survey on visual surveillance of object motion and behaviors,” Systems, Man and Cybernetics, Part C, IEEE Transactions, Vol. 34, Issue 3, pp. 334–352, August 2004.
[13]W. Hu, X. Xiao, D. Xie, and T. Tan “Traffic accident prediction using 3-D model-based vehicle tracking,” Vehicular Technology, IEEE Transactions, Vol. 53, Issue 3, pp. 677-694, May 2004.
[14]H. Ikeda, Y. Kaneko, T. Matsuo, and K. Tsuji, “Abnormal incident detection system employing image processing technology,” Intelligent Transportation Systems, Proceedings. 1999 IEEE/IEEJ/JSAI International Conference, pp. 748-752, October 1999.
[15]王文俊,“認識Fuzzy”,全華科技圖書股份有限公司,2002.
[16]孫宗瀛,“FUZZY 控制:理論實作與應用”,全華科技圖書股份有限公司,1999。
[17]E. C. P. Chang, “Fuzzy systems based automatic freeway incident detection,” IEEE International Conference, Vol. 2, pp. 1727-1733, Octorber 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔