跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 01:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林清政
研究生(外文):Ching-Cheng Lin
論文名稱:掃描測試時降低電力消耗之多重輸入控制樣本產生器
論文名稱(外文):Multiple Input Blocking Pattern Generator for Reducing Power Consumption during Scan Testing
指導教授:曾王道
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:31
中文關鍵詞:大型積體電路掃描測試轉變密度電力消耗主要輸入端轉變衝擊方程式
外文關鍵詞:VLSIscan based circuitspurious transitionpower dissipationprimary inputimpact function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著超大型體電路技術(VLSI technology)的進步,高效能、低成本以及高密度的晶片已經成為主流,因此晶片測試的難度也越來越高,降低測試期間的功率消耗也變得越來越重要。尤其在掃描測試的架構(scan-based architecture)下,測試資料移位(shift)至掃描細胞(scan cell)期間會造成過多的功率消耗,而測試期間過多的功率消耗會導致電路成本增加以及良率的降低。因此,減小在掃描測試(scan test)期間,測試資料移位(shift)至掃描細胞的功率消耗將可以避免上述問題的產生。本篇論文中,我們依據每個實際測試向量(test vector)計算出掃描細胞(scan cell)的信號轉變機率(signal probability)及電路中各個邏輯閘的轉變密度(transition density),並使用一個轉變衝擊方程式(impact function)來測量每一個邏輯閘在測試期間對受測電路造成的影響,再依據此影響程度,設計一個演算法得到多個用在主要輸入端(primary input)的控制樣本(control pattern) 。這個控制樣本(control pattern) 可以在掃描測試的掃描細胞資料移位(shift)時盡最大可能來阻止0-1轉換(transition)的繁衍,達到有效地降低功率消耗就如同減少0-1轉換次數一樣。最後,可以由實驗結果觀察到,我們提出的方法能夠在沒有違反佈局限制條件下,有效地降低測試期間的功率消耗。實驗結果並顯示出本篇論文所提出的方法在0-1轉換, 也就是功率消耗(power dissipation)上可達到38.46%的改善程度。這結果均優於單一控制樣本的主要輸入端控制樣本PIBP (Primary Input Blocking Pattern)及其他現有的方法。
As the VLSI technology grows up, high performance, low-cost, high density integrated circuits became main stream. Hence, testing for integrated circuit is more and more complex and reducing the power consumption during testing is also more and more important. Especially, in the scan-based testing, the spurious transitions will be produced by scan flip-flops during shift cycles and the spurious transition will dissipate more power and lead to loss of yield or decrease the reliability of the circuit under test. Therefore, minimize the power consumption of full-scan circuits during shift cycles can avoid the above problem. In this thesis, we calculate the signal probability of all scan cells and transition density of all gates for each test vector. We also calculate the influence degree of each gate with impact function value. The impact function value is used to estimate whether a gate has high influence or low influence in the circuit. According to the influence of each gate, we propose a new algorithm to generate a blocking pattern for each test vector, it is applied to the primary inputs during shift cycle and can block the switching activity which occurs in the combinational part of the circuit as many as possible during test, and can efficiently reduce the power consumption as same as transition count. Finally, the experimental results on the ISCAS 89 benchmark circuits show that our proposed approach can achieve 38.46% improvement efficiency for most circuits and always produces better results than PIBP and existing approaches.
Contents
Chapter 1. Introduction 1
1.1 Background and Motivation 1
1.2 Thesis Organization 3
Chapter 2. Related Work 4
2.1 Test Vector Ordering 4
2.2 Scan Cell Ordering 5
2.3 Primary Input Blocking Pattern (PIBP) 6
Chapter 3. Preliminaries 8
3.1 Scan-Based Test Model 8
3.2 Calculation of Transition Count 9
3.3 Calculation of Transition Density 10
3.4 Calculation of Impact Function Value 10
3.5 Line Justification 14
Chapter 4. Proposed Approach 15
4.1 Finding the Common Gates 16
4.2 Calculating the Signal Probability 17
4.3 Calculating the Transition Density 17
4.4 Calculating the Impact Function Value 18
4.5 Generating Blocking Table 19
4.6 Generating Blocking Pattern 21
4.7 Repeating 23
4.8 Test Application 24
4.9 MIBP (Multiple Input Blocking Pattern) Algorithm 25
Chapter 5. Experiments 27
5.1 Experimental Environment 27
5.2 Experimental Results 27
Chapter 6. Conclusion 29
References 30
References
[1]P. Girard, “Survey of low-power testing of VLSI circuits,” IEEE Design & Test of Computer, vol. 17, Issue 3, pp. 80-90, May 2002.
[2]Bonhomme, Y, Girard, P, Landrault, C, Pravossoudovitch, S, “Test power: a big issue in large SOC designs” Electronic Design, Test and Applications, 2002. Proceedings. The First IEEE International Workshop on 29-31 Jan. 2002 Page(s):447 – 449.
[3] Y. Zorian, “A distributed BIST control scheme for complex VLSI devices,” Proc. 11th IEEE VLSI Test Symp., 1993, pp. 4-9.
[4] V. Dabholkar, S. Chakravarty, I. Pomeranz, and S. Reddy, “Techniques for minimizing power dissipation in scan and combinational circuits during test application,” IEEE Trans. Computer-Aided Design, vol. 17, pp. 1325-1333, Dec. 1998.
[5] S. Gerstendorfer and H. J. Wunderlich, “Minimized power consumption for scan-based BIST,” Proc. IEEE int’l Test Conf., 1999, pp. 77-84.
[6]Girard, P, Landrault, C, Pravossoudovitch, S, Severac, D, “Reducing power consumption during test application by test vector ordering” Circuits and Systems, 1998. IEEE International Symposium on Volume 2, 31 May-3 June 1998 Page(s):296 - 299 vol.2.
[7]Girard, P, Guiller, L, Landrault, C, Pravossoudovitch, S, “A test vector ordering technique for switching activity reduction during test operation” VLSI, 1999. Proceedings. Ninth Great Lakes Symposium on 4-6 March 1999 Page(s):24 - 27
[8]Bellos, M, Bakalis, D, Nikolos, D, Kavousianos, X, “Low power testing by test vector ordering with vector repetition” Quality Electronic Design, 5th International Symposium on 2004 Page(s):205 – 210.
[9]Kavousianos, X, Bakalis, D, Bellos, M, Nikolos, D, “An efficient test vector ordering method for low power testing” VLSI, 2004.Proceedings. IEEE Computer society Annual Symposium on 19-20 Feb. 2004 Page(s):285 – 288.
[10]Bellos, M, Bakalis, D, Nikolos, D, “Scan cell ordering for low power BIST” VLSI, 2004.Proceedings. IEEE Computer society Annual Symposium on 19-20 Feb. 2004 Page(s):281 – 284.
[11]Wang-Dauh Tseng , “Minimizing Power Dissipation during Scan Test by Scan Chain Ordering”, IEEE-CDT Sept. 2005, pp. 609-617.
[12]S. Wang and S. K. Gupta, “ATPG for heat dissipation minimization during test application,” Proc. IEEE Int’l Conf., Oct. 1994, pp. 250-258.
[13]S. Wang and S. K. Gupta, “ATPG for heat dissipation minimization during scan testing,” Proc. 34th ACM/IEEE Design Automation Conf., July 1997, pp. 614-619.
[14]TC Huang and KJ Lee, “Reduction of power consumption in scan-based circuits during test application by an input control technique,” IEEE Transaction computer AIDED DESIGN of IC and SYSTEMS, Vol.20, NO.7, JULY 2001, pp 911-917.
[15]N.Nicolici, B.M.AL-Hashimi and A.C..Williams,“Minimisation of power dissipation during test application in full-scan sequential circuits using primary input freezing,” IEEE Proc.-Comput. Digit.Tech, Vol.147, NO. 5, September 2000, pp 313-322.
[16]S. Wang and S. K. Gupta, “DS-LFSR: a BIST TPG for low switching activity,” IEEE Trans. Computer-Aided Design, vol. 21, pp. 842-851, July 2002.
[17]Niraj Jha and Sandeep Gupta, Testing of Digital Systems, Cambridge University Press, 2003.
[18]M. N. Swamy and K. Thulasiraman, Graphs, Networks, and Algorithms. New York: Wiley, 1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top