跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/10 20:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳亭芳
研究生(外文):Ting-Fung Chen
論文名稱:在無線多媒體網路中利用時間空間序列模型 來動態預測資源保留機制之研究
論文名稱(外文):Predictive Dynamic Resource Reservation Scheme with Time-Space Series Model in Multimedia Wireless Networks
指導教授:賴國華
口試委員:黃依賢劉晨鐘
口試日期:2006-6-23
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:50
中文關鍵詞:無線多媒體網路預測資源保留時間空間序列模型換手優先權
外文關鍵詞:Multimedia Wireless NetworkPredictive Resource ReservationTime-Space Series ModelHandover Prioritization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在無線多媒體網路中,多個微細胞服務範圍劃分及使用者移動特性造成行動台的換手機率頻繁,產生不穩定、非帕松分布且多時變的通訊模型。並且,細胞無足夠的資源可供使用時,將造成阻塞,影響系統效能。多種服務型態在下一代無線通訊系統是主要的潮流,因此,適當的資源預留機制以及配置方式是一項非常重要的議題。
本論文提出一個動態預測資源保留機制,利用時間空間序列模型,預估在多種服務類別考量下,換手以及新使用者要求服務的資源需求量,利用時間相關的歷史資料及網路拓墣等空間因素來作通訊量預測。首先,將過去歷史紀錄,利用時間序列模型(ARIMA)模擬未來狀況及趨勢,再結合細胞與細胞之間換手的空間相關性調整權重,利用類神經網路修正預測值,以接近真實通訊量。此模型結合線上預測機制於資源預留標準的決定,使得更有效率來預測、控制、配置系統資源。最後,再以我們所提出的方法與幾個資源預留機制做比較。
為了評估動態預測資源保留機制的效能,同時考量即時及非即時性服務,以換手使用者阻塞率、新使用者丟失率和頻寬使用率表示實驗結果。實驗結果顯示,與其他機制相比,高通訊量於動態預測資源保留機制有較為良好的表現。整體阻塞率減少7~26%,丟失率可維持在5%以下。在大多數環境下,系統頻寬使用率增加11%。然而,此預測方法如利用非適當的更新間隔時,亦造成效果不佳或系統負荷過大的問題。
Due to a large number of picocells and different user mobility in multimedia wireless networks, the probability of handover becomes higher and the traffic pattern can be arbitrary with time and following a non-Poisson and non-stationary process. As a result, without enough available resource for request call arrival, it may cause much higher blocking rate. Hence, how to reserve and control the resource allocation is one of most important issues in next generation wireless networks.
This thesis proposed a predictive resource reservation method with time-space series model for estimating resource requirement of handover call and new call from different service classes. Using local information and recent history from a spatial neighborhood of observed cells, a time-space series model is utilized to perform a traffic prediction. First, Seasonal-ARIMA(SARIMA) model is adopted to fit the actual traffic data measured in the reference cells. Then, spatial dependencies between the target cells and its neighbor cells are incorporated into this model for actual network environment. Due to spatial and temporal dependencies are modeled simultaneously for approximating and forecasting traffic, the prediction model is solved using artificial neural network. Based on time-space series prediction model, we estimate the resource requirement with online traffic predictor, it could be more efficient for supporting resource forecast, control, and allocation in the variable wireless networks, and the system performance could be increased by using the precise reservation levels.
In order to demonstrate the difference performance of our mechanism between those of several reservation methods, a service-dependent system model is adopted to integrate real-time and non-real-time services for call admission control (CAC). The performance indicators of our evaluations in terms of handover request call blocking probability (HDP) and the new call dropping probability (NBP) are represented. The results show that it performs well at heavy traffic load. The total reduction in call blocking rate is about 7~26%. It can also keep the total call dropping rate below 5%. At various call arrival rates, the bandwidth utilization can be increase 11%. However, using an unsuitable update interval may cause worst performance for fixed PDC scheme, even if in PDC scheme, it may causes heavy system overhead for repeated prediction.
List of Figures viii
List of Tables ix
Nomenclature x
1 Introduction 1
1.1 Background and Motivation 1
1.2 Scope of the Work 6
1.3 Thesis Organization 7
2 Related Work 8
2.1 Resource Reservation Methods 8
2.2 Time-Space Series Models 10
2.2.1. Spatiotemporal Auto-regressive Models 13
2.2.2. STARIMA Models 14
3 Proposed Resource Prediction and Reservation Mechanism 16
3.1 Predictive Dynamic Resource Reservation Mechanism 16
3.2 Qualitative Analysis of Reservation Mechanism 24
4 Performance Analysis and Simulation 26
4.1 System Model 26
4.2 Network Simulation and Performance Analysis 29
4.3 Numerical Results 31
4.3.1. Prediction Accuracy 31
4.3.2. New Call Blocking Rate 38
4.3.3. Handover Call Dropping Rate 41
4.3.4. Bandwidth Utilization 44
5 Conclusion 46
5.1 Contribution 46
5.2 Limitation and Future Works 47
Bibliography 48
[Box 94]G.eorge E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel, Time Series Analysis Forecasting and Control, third ed. Prentice- Hall, 1994
[Cappe 02]Olivier Cappe, Eric Moulines, Jean-Christophe Pesquet, Athina Petropulu, and Xueshi Yang, “Long-Range Dependence and Heavy-Tail Modeling for TELETRAFFIC DATA,” Signal Processing Magazine, IEEE, Volume 19, Issue 3, May 2002, pp. 14 – 27

[Chen 02]Yen-Wen Chen, “Traffic behavior analysis and modeling of sub-networks,” International Journal of Network Management, Volume 12 Issue 5, August 2002
[Chiu 00]Ming-Hsing Chiu and Mostafa A. Bassiouni, “Predictive schemes for handoff prioritization in cellular networks based on mobile positioning,” IEEE Journal on Selected Areas in Communications, Volume 18, Issue 3, March 2000, pp. 510 – 522.
[Dias 03]Kelvin L. Dias, Stênio F. L. Fernandes, and Djamel F. H. Sadok, “Predictive call admission control for all-IP wireless and mobile networks,” Proceedings of the 2003 IFIP/ACM Latin America conference on Towards a Latin American agenda for network research, October 2003
[Jagger 02]Thomas H. Jagger, Xufeng Niu and James B. Elsner, “A Space-Time Model For Seasonal Hurricane Prediction,” International Journal of Climatology, Volume 22, Issue 4, pp. 451 – 465, 18 Apr 2002

[Jordi 05]Jordi Perez-Romero, Oriol Sallent, Ramon Agusti, and Miguel Angel Diaz-Guerra, “Radio Resource Management Strategies in UMTS,” John Wiley &; Sons, Ltd
[Kim 99]Young Chon Kim,.Dong Eun Lee, Bong Ju Lee, Young Sun Kim, and Biswanath Mukherjee, “Dynamic channel reservation based on mobility in wireless ATM Networks,” IEEE Communications Magazine, Volume 37, Issue 11, Nov. 1999, pp. 47 – 51
[Kuo 01]Geng-Sheng Kuo, Po-Chang Ko, and Min-Lian Kuo, ”A probabilistic resource estimation and semi-reservation scheme for flow oriented multimedia wireless networks,” IEEE Communications Magazine, Volume 39, Issue 2, Feb. 2001, pp. 135 - 141
[Laiho 02]Janna Laiho, Achim Wacker, Tomas Novosad, 2002. Radio Network Planning and Optimisation for UMTS, John Wiley &; Sons, LTD.
[Liu 99]Jiakun Liu, Yantai Shu, Lianfang Zhang, Fei Xue, and Oliver W. W. Yang, “Traffic Modeling Based on FARIMA Models,” IEEE Canadian Conference on Electrical and Computer Engineering , Volume 1, 9-12 May 1999, pp. 162 - 167 vol.1
[Luo 99]Xiaoyuan Luo, Ian Thng, and Wei Zhuang, ”A Dynamic Channel Pre-reservation Scheme for Handoffs with GoS Guarantee in Mobile Networks,” IEEE International Symposium on Computers and Communications, 1999. Proceedings, 6-8 July 1999 pp. 404 - 408
[Pfeifer 80]Phillip E. Pfeifer and Stuart Jay Deutsch, “A three-stage Iterative procedure for space-time modeling,” Technometrics, Vol.22, pp. 35-47, 1980
[Pokrajac 03]D Pokrajac, RL Hoskinson, and Z Obradovic, ”Modeling spatial-temporal data with a short observation history,” Knowledge and Information Systems, Volume 5 , Issue 3 ,September 2003, pp. 368 - 386
[Rozic 04]Nikola Rozic and Gorazd Kandus, “MIMO ARIMA models for handoff resource reservation in multimedia wireless network,” Wireless Communications and Mobile Computing, 2004; pp. 497-512
[Shu 00]Yantai Shu, Zhigang Jin, Jidong Wang, and O.W.W. Yang, “Prediction-Based Admission Control Using FARIMA Models,” 2000 IEEE International Conference on Communications, 2000. ICC 2000. Volume 3, 18-22 June 2000, pp. 1325 - 1329 vol.3
[Takahashi 00]Yoshiyasu Takahashi, Hitoshi Aida, and Tadao Saito, “ARIMA model's superiority over f-ARIMA model,” Communication Technology Proceedings, WCC - ICCT 2000. International Conference on Volume 1, 21-25 Aug. 2000, pp.66 - 69 vol.1

[Tode 00]Hideki Tode, “Traffic Predictor Using Neural Network and Its Performance,” Electronics and Communication in Japan, Part1, Vol.83, No.11, pp.208-216, 2000
[Tran 01]Nancy Tran, Daniel A. Reed, “ARIMA time series modeling and forecasting for adaptive I/O prefetching,” Proceedings of the 15th international conference on Supercomputing, June 2001
[Wang 03]Jingao Wang, Qing-An Zeng, Dharma P.Agrawal, “Performance analysis of a preemptive and priority reservation handoff scheme for integrated service-based wireless mobile networks,” IEEE Transactions on Mobile Computing, Volume 2, Issue 1, Jan.-March 2003, pp. 65 - 75
[Xu 02]Zhong Xu et al.; A New Adaptive Channel Reservation Scheme for Handoff Calls in wireless Cellular networks,” Proceedings of the Second International IFIP-TC6 Networking Conference on Networking Technologies, Services, and Protocols, 2002, pp. 672 – 684
[Zhang 01]Tao Zhang, Eric van den Berg, Jasmine Chennikara, Prathima Agrawal, Jyh-Cheng Chen, Toshikazu Kodama, “Local predictive resource reservation for handoff in multimedia wireless IP networks,” IEEE Journal on Selected Areas in Communications, Volume 19, Issue 10, Oct. 2001, pp.1931 - 1941
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top