(54.236.58.220) 您好!臺灣時間:2021/03/05 06:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘泓毅
研究生(外文):Hung-Yi Pan
論文名稱:非對稱歸屬函數之第二型模糊類神經網路分析及其應用
論文名稱(外文):Type-2 Fuzzy Neural Network with Asymmetric Membership Functions Analysis and Its Applications
指導教授:李慶鴻
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:116
中文關鍵詞:第二型模糊類神經網路非對稱歸屬函數補償控制解耦合控制非線性串接系統
外文關鍵詞:type-2 fuzzy neural networkasymmetric membership functions (FOU)compensated controldecoupled controlnonlinear cascade system
相關次數:
  • 被引用被引用:9
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出一個具非對稱歸屬函數(或可稱為Footprint Of Uncetainty, FOU)之第二型模糊類神經網路,並應用至非線性系統鑑別與控制。根據過去文獻提出的網路架構,本文以非對稱FOU取代常用的高斯對稱FOU。有別於高斯對稱FOU,非對稱FOU由四個高斯函數建構,可描述歸屬函數中心不明確(uncertain mean)與寬度不明確(uncertain variance)之特性,藉由非對稱之參數更新法則,可增加參數調整的效率與網路的近似能力。由系統鑑別的模擬結果可知,給定同樣的誤差需求,具非對稱FOU網路所使用的規則數與調整參數個數,皆少於對稱FOU網路。在非線性系統控制的應用上,對於可控典型式之受控系統,採用補償控制架構,配合Lyapunov穩定定理設計參數更新法則,模擬結果再次驗證使用非對稱FOU之優點;而對於非線性串接系統(nonlinear cascade system),以backstepping之概念將系統視為兩個子系統,依序設計虛擬控制器(virtual controller)與實際控制器使原系統穩定,稱為解耦合控制架構,由非線性TORA系統與球桿系統模擬結果可證明其可行性與性能。
This thesis proposes a type-2 fuzzy neural network (type-2 FNN) with asymmetric membership functions (also called Footprint Of Uncertainty, FOU), and applies it to identification and control of nonlinear systems. Based on the previous type-2 FNN structure, the mostly used Gaussian symmetric FOUs are replaced by asymmetric ones. An asymmetric FOU consists of four Gaussian functions. It describes the properties of both uncertain mean (center) and uncertain variance (width) in membership functions. Based on the Lyapunov approach, the corresponding adaption laws are derived to increase the efficiency of tuning parameters, and the approximation ability. The type-2 FNN with asymmetric FOU has small network structure (fewer rules and tuning parameters than the one with symmetric FOU) from the simulation results of system identification. For nonlinear system control, a type-2 FNN controller and compensated control scheme are used to treat the control problem of system with controllable canonical form. Based on the Lyapunov approach, the adaption laws and stability are also guaranteed. By the concept of backstepping, a nonlinear cascade system is decoupled into two sub-systems, then virtual controller and actual controller are designed sequentially to stabilize the system. Simulation results demonstrate the performance of our approach.
中文摘要.....i
英文摘要.....ii
誌 謝.....iii
目 錄.....iv
圖 目 錄.....vi
表 目 錄.....ix

第一章、前言.....1
1.1 文獻回顧.....1
1.2 研究動機與目的.....3
第二章、模糊邏輯系統(Fuzzy Logic System, FLS).....5
2.1 第一型模糊邏輯系統(Type-1 FLS).....5
2.2 第二型模糊邏輯系統(Type-2 FLS).....6
2.3 區間第二型模糊邏輯系統(Interval Type-2 FLS).....8
2.3.1 區間第二型歸屬函數(Interval Type-2 MFs).....9
2.3.2 區間第二型模糊推論(Interval Type-2 Fuzzy Inference).....11
2.3.3 區間第二型模糊集合之重心(Centroid of an Interval Type-2 Fuzzy Set)....15
2.3.4 降階運算(Type-Reduction)與解模糊(Defuzzification).....17
第三章、非對稱FOU之第二型模糊類神經網路(Type-2 Fuzzy Neural Network with Asymmetric FOU).....21
3.1 非對稱FOU (Asymmetric FOU).....21
3.2 網路架構.....25
3.3 倒傳遞學習演算法(Back-Propagation Learning Algorithm, BP).....31
3.4 穩定性分析.....37
第四章、非線性系統鑑別與時間序列預測.....41
4.1 非線性系統鑑別.....41
4.1.1 例4.1.....42
4.1.2 例4.2.....47
4.2 Mackey-Glass時間序列預測.....52
第五章、非線性系統控制.....62
5.1 可控典型式系統之補償控制架構.....62
5.2 倒單擺系統穩定與追蹤控制.....70
5.3 非線性串接系統之解耦合控制架構.....78
5.4 球桿系統之穩定與追蹤控制.....82
5.5 TORA系統之穩定與追蹤控制.....88
第六章、結論.....95
附錄一、BP參數更新法則推導.....97
附錄二、補償控制穩定性推導.....108
參考文獻.....111
[1]T. G. B. Amaral, M. M. Crisostomo, and V. F. Pires, “Adaptive Neuro-fuzzy Inference System for Modelling and Control,” 2002 First International IEEE Symposium on Intelligent Systems, Vol.1, pp. 67-72, 2002.
[2]V. Barra and J. Y. Boire, “Automatic Segmentation of Subcortical Brain Structure in MR Images Using Information Fusion,” IEEE Trans. on Medical Imaging, Vol. 20, pp. 549-558, 2001.
[3]M. Brown and C. J. Harris, Neurofuzzy Adaptive Modeling and Control, Prentice-Hall, NJ, 1994.
[4]R. T. Bupp, D. S. Bernstein, and V. T. Coppola, “Experimental Implementation of Integrator Backstepping Control and Passive Nonlinear Controllers on the RTAC Tested,” Proc. of the 1996 IEEE Int. Conf. on Control Applications, pp. 279-284, 1996.
[5]R. T. Bupp, et al., “Special Issue: A Nonlinear Benchmark Problem,” Int. J. of Robust Nonlinear Control, Edited by Bernstein, D. S., Vol. 8, No. 4, pp. 305-457, John Wiley Sons, 1998.
[6]O. Castillo and P. Melin, “Adaptive Noise Cancellation Using Type-2 Fuzzy Logic and Neural Networks,” Proc. of 2004 IEEE International Conf. on Fuzzy Systems, Vol. 2, pp. 1093-1098, 2004.
[7]Y. C. Chen and C. C. Teng, “A Model Reference Control Structure Using a Fuzzy Neural Network,” Fuzzy Sets and Systems, Vol. 73, pp. 291-312, 1995.
[8]L. H. Fang, A. G. Wu, and A. H. Zheng, “GA&LS-Based Fuzzy Neural Network Control,” 5th World Congress on Intelligent Control and Automation, Vol. 3, pp. 2647-2650, 2004.
[9]W. A. Farag, V. H. Quintava, and L. T. Germano, “A Genetic-Based Neuro-Fuzzy Approach for Modeling and Control of Dynamical Systems,” IEEE Trans. on Neural Networks, Vol. 9, No. 5, pp. 756-767, 1998.
[10]S. S. Farinwata, D. Filev, and R. Langari, Fuzzy Control: Synthesis and Analysis, John Wiley & Sons, NY, 2000.
[11]S. Guan, H. X. Li, and S. K. Tso, “Multivariable Fuzzy Supervisory Control for the Laminar Cooling Process of Hot Rolled Slab,” IEEE Trans. on Control Systems Technology, Vol. 9, pp. 348-356, 2001.
[12]F. Guely and P. Siarry, “Gradient Descent Method for Optimizing Various Fuzzy Rule Bases,” 1993 Second IEEE International Conf. on Fuzzy Systems, Vol. 2, pp. 1241-1246, 1993.
[13]J. Hauser, S. Sastry and P. Kokotovic, “Nonlinear Control via Approximate Input-Output Linearization: the Ball and Beam Example,” IEEE Trans. on Automatic Control, Vol. 37, No. 3, pp. 392-398, 1992.
[14]A. V. Holden, Chaos, Princeton University Press, NJ, 1986.
[15]S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On Fuzzy Modeling Using Fuzzy Neural Networks with the Back-Propagation Algorithm,” IEEE Trans. on Neural Networks, Vol. 3, No. 5, pp. 801-806, 1992.
[16]S. Huang, M. R. James, Z. P. Jiang, “L∞-Bounded Robust Control of Nonlinear Cascade Systems,” The 5th Asian Control Conference, Vol. 1, pp. 532-539, 2004.
[17]R. I. John, “Embedded Interval Valued Type-2 Fuzzy Sets,” Proc. of the 2002 IEEE International Conf. on Fuzzy Systems, Vol. 2, pp. 1316-1320, 2002.
[18]G. Kaliora and A. Astolfi, “A Simple Design for the Stabilization of a Class of Cascaded Nonlinear Systems with Bounded Control,” Proc. of the 40th IEEE Conf. on Decision and Control, Vol. 4, pp. 3784-3789, 2001.
[19]N. N. Karnik , J. M. Mendel, and Q. Liang, “Type-2 Fuzzy Logic Systems,” IEEE Trans. on Fuzzy Systems, Vol. 7, No. 6, pp. 643-658, 1999.
[20]N. N. Karnik , J. M. Mendel, “Introduction to Type-2 Fuzzy Logic Systems,” IEEE World Congress on Computational Intelligence., The 1998IEEE International Conf. on Fuzzy Systems Proc., Vol. 2, pp. 915-920, 1998.
[21]L. I. Larkin, “A Fuzzy Logic Controller for Aircraft Flight Control,” in Industrial Applications of Fuzzy Control, M. Sugeno, Ed., Amsterdam: North-Holland, pp. 87-104, 1985.
[22]C. H. Lee, J. L. Hong, Y. C. Lin, and W. Y. Lai, “Type-2 Fuzzy Neural Network Systems and Learning,” International Journal of Computational Cognition, Vol. 1, No. 4, pp. 79-90, 2003.
[23]C. H. Lee, W. Y. Lai, and C. C. Chen, “Lossless Image Coding via Adaptive Takagi-Sugeno Fuzzy Neural Network Predictor,” IEEE International Conf. on Networking, Sensing, and Control, Vol. 1, pp. 565-570, 2004.
[24]C. H. Lee, W. Y. Lai, and Y. C. Lin, “A TSK-type Fuzzy Neural Network (TFNN) Systems for Dynamic Systems Identification,” 42nd IEEE Conf. on Decision and Control, Vol. 4, pp. 4002-4007, 2003.
[25]C. H. Lee, Y. C. Lin, “An Adaptive Type-2 Fuzzy Neural Controller for Nonlinear Uncertain Systems,” International Journal of Control and Intelligent, Vol. 12, No. 1, pp. 41-50, 2005.
[26]C. H. Lee and Y. C. Lin, “Control of Nonlinear Uncertain Systems Using Type-2 Fuzzy Neural Network and Adaptive Filter,” 2004 IEEE International Conf. on Networking, Sensing, and Control, Vol. 2, pp. 1177-1182, 2004.
[27]C. H. Lee, Y. C. Lin, and W. Y. Lai, “Systems Identification Using Type-2 Fuzzy Neural Network (Type-2 FNN) Systems,” Proc. 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Vol. 3, pp. 1264-1269, 2003.
[28]C. H. Lee and C. C. Teng, “Identification and Control of Dynamic Systems Using Recurrent Fuzzy Neural Networks,” IEEE Trans. on Fuzzy Systems, Vol. 8, No. 4, pp. 349-366, 2000.
[29]C. Li, K. H. Cheng, and J. D. Lee, “Hybrid Learning Neuro-Fuzzy Approach for Complex Modeling Using Asymmetric Fuzzy Sets,” Proc. of the 17th IEEE International Conf. on Tools with Artificial Intelligence, pp. 397-401, 2005.
[30]K. Y. Lian, C. S. Chiu, T. S. Chiang, and P. Liu, “LMI-Based Fuzzy Chaotic Synchronization and Communications,” IEEE Trans. on Fuzzy Systems, Vol. 9, pp. 539-553, 2001.
[31]Q. Liang and J. M. Mendel, “Interval Type-2 Fuzzy Logic Systems: Theory and Design,” IEEE Trans. On Fuzzy Systems, Vol. 8, No. 5, pp. 535-550, 2000.
[32]C. H. Lin, “Adaptive Recurrent Fuzzy Neural Network Control for Synchronous Reluctance Motor Servo Drive,” IEE Proc. of Electr. Power Appl., Vol. 151, No. 6, pp. 711-724, 2004.
[33]C. H. Lin, W. D. Chou and F. J. Lin, “Adaptive Hybrid Control Using a Recurrent Neural Network for a Linear Synchronous Motor Servo-drive System,” IEE Proc. of Control Theory and Appl., Vol. 148, Issue 2, pp. 156-168, 2001.
[34]C. T. Lin and C. S. G. Lee, “Neural-Network-Based Fuzzy Logic Control and Decision System,” IEEE Trans. on Computers, Vol. C-40, No. 12, pp. 1320-1336, 1991.
[35]C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems, Prentice-Hall, NJ, 1996.
[36]J. C. Lo and Y. H. Kuo, “Decoupled Fuzzy Sliding-Mode Control,” IEEE Trans. on Fuzzy Systems, Vol. 6, No. 3, pp. 426-435, 1998.
[37]J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Upper Saddle River, Prentice-Hall, NJ, 2001.
[38]J. M. Mendel, R. B. John, “A Fundamental Decomposition of Type-2 Fuzzy Sets,” IFSA World Congress and 20th NAFIPS International Conf., Vol. 4, pp.1896-1901, 2001.
[39]J. M. Mendel and R. I. John, “Type-2 Fuzzy Sets Made Simple,” IEEE Trans. On Fuzzy Systems, Vol. 10, No. 2, pp. 117-127, 2002.
[40]J. M. Mendel and H. Wu, “Properties of the Centroid of an Interval Type-2 Fuzzy Set, Including the Centroid of a Fuzzy Granule,” The 14th IEEE International Conf. on Fuzzy Systems, pp. 341-346, 2005.
[41]M. Mizumoto and K. Tanaka, “Some Properties of Fuzzy Sets of Type-2,” Information and Control, Vol. 31, pp. 312-340, 1976.
[42]K. S. Narendra and K. Parthasarathy, “Identification and Control of Dynamical Systems Using Neural Networks,” IEEE Trans. on Neural Networks, Vol. 1, No. 1, pp. 4-27, 1990.
[43]D. Sinha, P. Sinha, E. R. Dougherty, and S. Batmen, “Design and Analysis on Fuzzy Morphological Algorithms for Image Processing,” IEEE Trans. on Fuzzy Systems, pp. 570-584, 1997.
[44]J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, NJ, 1991.
[45]C. J. Wan, D. S. Bernstein, and V. T. Coppola, “Global Stabilization of the Oscillating Eccentric Rotor,” Proc. of the 33rd IEEE Conf. on Decision and Control, pp. 4024-4029, 1994.
[46]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall, NJ, 1994.
[47]L. X. Wang, A Course in Fuzzy Systems and Control, Prentice-Hall, NJ, 1997.
[48]C. H. Wang, C. S. Cheng, and T. T. Lee, “Dynamical Optimal Training for Interval Type-2 Fuzzy Neural Network (T2FNN),” IEEE Trans. on Systems, Man, and Cybernetics-Part B, Vol. 34, pp. 1462-1477, 2004.
[49]L. A. Zadeh, “The Concept of A Linguistic Variable and Its Application to Approximate Reasoning,” Information Sciences, Vol. 8, pp. 199-249, 1975.
[50]王進德、蕭大全, 類神經網路與模糊控制理論入門, 全華科技圖書有限公司, 1994.
[51]林育慶(Y. C. Lin), 第二型模糊類神經網路系統及其應用:訊號處理、非線性系統鑑別與控制, 元智大學, 碩士論文, 2004.
[52]邱明輝(M. H. Chiu), TSK形式之遞迴式模糊類神經網路及其應用:使用新型混合演算法GA_BPPSO, 元智大學, 碩士論文, 2005.
[53]孫宗瀛、楊英魁, Fuzzy 控制:理論、實作與應用, 全華科技圖書有限公司, 2003.
[54]陳永平、張浚林, 可變結構控制設計(修訂版), 全華科技圖書有限公司, 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 戴寶村 <聖諭教條與清代社會> 《國立臺灣師範大學歷史學報》13期 1985年
2. 溫振華 <清代台灣的建城與防衛體系的演變> 《國立臺灣師範大學歷史學報》13期 1985年6月
3. 謝貴文 <清代鳳山知縣宋永清的政績> 《高市文獻》18卷1期 2005年3月
4. 熊秉真 <從唐甄看個人經驗對經世思想衍生之影響> 《中央研究院近代史研究所集刊》第14期 1985年6月
5. 葉振輝 <鴉片戰爭與臺灣> 《臺灣文獻》43卷2期 1992年6月
6. 潘英 <平埔族史略> 《臺灣文獻》44卷1期 1993年3月
7. 莊吉發 <世治聽人,世亂聽神—清代台灣民變與民間信仰> 《臺灣文獻》52卷2期 2001年6月
8. 張世賢 <清代對於臺灣海防地位之認識> 《臺灣文獻》27卷2期 1976年6月
9. 羅運治 <鴉片戰爭時姚瑩防台措施的探討> 《中國歷史學會史學集刊》23期1991年
10. 湯熙勇 <清代臺灣循吏曾曰瑛的事略——兼論連雅堂的循吏觀> 《史聯雜誌》30、31期 1997年12月
11. 黃克武 <理學與經世—清初「切問齋文鈔」學術立場之分析> 《中央研究院近代史研究所集刊》第16期 1987年6月
12. 黃克武 <經世文編與中國近代經世思想研究> 《近代中國史研究通訊》第2期1986年
13. 周啟榮、劉廣京 <皇朝經世文編關於「經世之學」的理論> 《中央研究院近代史研究所集刊》第15期 1986年6月
14. 李焯然 <論儒家的經世之學> 《大陸雜誌》79卷4期 1989年10月
15. 李汝和 <清代臺灣班兵制度與屯田募兵之議> 《臺灣文獻》21卷2期 1970年6月
 
系統版面圖檔 系統版面圖檔