跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 02:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉晉榮
研究生(外文):Chin-Jung Yeh
論文名稱:倒單擺之適應性解耦合控制器設計
論文名稱(外文):Adaptive Decoupling Controller Design for Inverted Pendulum
指導教授:林志民林志民引用關係
指導教授(外文):Chih-Min Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:68
中文關鍵詞:倒單擺控制模糊控制滑動控制解耦合
外文關鍵詞:Inverted pendulum systemfuzzy logic controlsliding-mode controldecoupled
相關次數:
  • 被引用被引用:1
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
由於倒單擺控制系統為一個非線性且不穩定之系統,因此常被眾多研究視為驗證控制法則的討論對象。再加上因為單擺角度與台車位置之間會相互影響、干擾,所以若使用傳統控制理論來完成穩定單擺與台車定位這兩個控制目標是相當困難的。本研究利用模糊解耦合的方式來將系統分解成兩個子系統,並利用滑動模式的方法來減低模糊邏輯控制的規則數目,且利用適應性法則來自動學習所需的控制規則以同時完成倒單擺系統的穩定單擺與台車定位兩個控制目標。最後,將此適應性解耦合模糊滑動控制法則應用到實際的倒單擺系統上來加以驗證所提出方法之可行性,經由實驗結果可以證明適應性解耦合控制可以成功地完成預期的控制目標。
The inverted pendulum system is a typical fourth-order nonlinear, time-varying, coupling, and unstable dynamic system. In this study, an adaptive decoupled fuzzy sliding-mode controller (ADFSMC) is proposed to achieve the control objectives of the inverted pendulum system. In the ADFSMC, the whole fourth-order nonlinear system is decoupled into two second-order subsystems. The control action is combined with main subsystem and secondary subsystem to make both subsystems moving toward their sliding surfaces, respectively. Moreover, an adaptive law based on Lyapunov stability theory can online tune the fuzzy control rules and the bound of uncertainty approximation error, so that the whole system’s stability can be guaranteed. Finally, we utilize the ADFSMC to control the actual inverted pendulum system. From the experimental results, it is shown that the ADFSMC can achieve the control objectives and can overcome the external disturbance.
書名頁i
論文口試委員審定書ii
授權書iii
中文提要iv
Abstract v
Acknowledgments vi
Contents vii
List of tables ix
List of figures x
Chapter 1 Introduction 1
1.1 General Remark and Overview of Previous Work 1
1.2 Objectives and Organization of the Thesis 3
Chapter 2 Mechanism Structure of Inverted Pendulum System 5
2.1 Overview 5
2.2 Mechanical Structure of Experimental Mechanism 5
2.3 Controller Structure of Inverted Pendulum System 6
2.4 Mathematical Model of Inverted Pendulum System 8
2.5 Summary 15
Chapter 3 Controller Design for Inverted Pendulum System 20
3.1 Overview 20
3.2 Swing-up Controller Design 21
3.3 Balance Controller Design 22
3.3.1 PID Controller Design 22
3.3.2 Fuzzy Logic Controller Design 24
3.3.3 Fuzzy Sliding-Mode Controller Design 28
3.3.4 Decoupled Fuzzy Sliding-Mode Controller Design 32
3.3.5 Adaptive Decoupled Fuzzy Sliding-Mode Controller Design 34
3.4 Summary 39
Chapter 4 Experimental Results 44
4.1 Overview 44
4.2 Experimental Results 45
4.3 Summary 47
Chapter 5 Conclusions and Suggestions for Future Research 64
5.1 Conclusions 64
5.2 Suggestions for Future Research 65
References 66
[1] A. Ohsumi and T. Izumikawa, “Nonlinear control swing-up and
stabilization of an inverted pendulum”, Proceedings of the 34th
IEEE Conference on Decision and Control, Vol.4, pp.3873-3880,
1995.
[2] K. J. Astrom, and K. Furuta, “Swinging up a pendulum by energy
control”, Automatica 36, pp.287-295, 2000.
[3] W. D. Chang, R. C. Hwang and J. G. Hsieh, “A self-tuning PID
control for a class of nonlinear systems based on the Lyapunov
approach”, Proceedings of IEEE International Conference on
SMC, pp.1461-1465, 1999.
[4] R. Olfati-Saber, “Fixed point controllers and stabilization of the
cart-pole system and the rotating pendulum”, Proceedings of the
38th IEEE Conference on Decision and Control, Vol.2,
pp.1174-1181, 1999.
[5] A. R. Teel, “A nonlinear small gain theorem for the analysis of
control systems with saturation”, IEEE Trans. On Automatic
Control, Vol.40, No.9, pp.1256-1270, 1996.
[6] S. J. Huang and C. L. Huang, “Control of an inverted pendulum
using grey prediction model”, IEEE Trans. On Industry
Applications, Vol.36, pp.452-458, 2000.
[7] C. E. Lin and Y. R. Sheu, “A Hybrid-Control Approach for
Pendulum-Cart Control”, IEEE Trans. on Industrial Electronics,
Vol. 39, No. 3, pp. 208-214, 1992.
[8] K. Furuta, “Design of Variable Structure Controllers”, IEEE Proc.
of the 39th Conf. on Decision and Control, pp. 1685-1690, 2000.
[9] J. C. Lo and Y. H. Kuo, “Decoupled Fuzzy Sliding-Mode Control”,
IEEE Transactions on Fuzzy Systems, Vol. 6, No. 3, August 1998.
[10] H. Lee, E. Kim, H. J. Kang, and M. Park, “Design of a
Sliding-Mode Controller with Fuzzy Sliding Surfaces”, IEE
Proc-Control Theory Appl., Vol 145, No. 5, September 1998.
[11] F. K. Tsai, “Nonlinear and Adaptive Control Design for a
360-Degree Inverted Pendulum System”, Department of
Electrical Engineering of National Chi Nan University, Degree of
Master of Science, June 12, 2003.
[12] 洪介仁, “車與桿倒單擺系統之平衡控制”, 國立成功大學工程
科學系, 碩士論文, 民國九十二年七月.
[13] P. C. Sen, Principles of Electric Machines and Power Electronics,
John Wiley & Sons, Inc. 1989.
[14] W. L. Chin, “Adaptive Intelligent Decoupled Fuzzy Sliding-Mode
Control System Design”, Department of Electrical Engineering of
Yuan-Ze University, Degree of Master of Science, May, 2005.
[15] C. T. Lin and C. S. George Lee, Neural Fuzzy Systems: A
Neuro-Fuzzy Synergism to Intelligent Systems, Pearson Education
Taiwan Ltd., Taiwan, 1996.
[16] L. X. Wang, Adaptive Fuzzy Systems and Control: Design and
Stability Analysis, Prentice Hall International, Inc., 1994.
[17] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood
Cliffs, NJ: Prentice-Hall, 1991.
[18] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a
survey”, IEEE Trans. Indus. Elec. Vol. 40, No. 1, pp. 2-22, 1993.
[19] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing up control of
inverted pendulum”, International Conference on Industrial
Electronics, Control and Instrumentation, Vol. 3, pp. 2193-2198,
Kobe, Japan, October. 1991.
[20] M. Wiklund, A. Kristenson, and K. J. Astraom, “ A new strategy
for swinging up an inverted pendulum”, Preprints IFAC 12th
world congress, Sydney, Australia, 1993.
[21] M. Yamakita, K. Nonaka, and K. Furuta, “Swing up control of
double pendulum”, Proceedings of the American Control
Conference, pp. 2229-2233, SanFrancisco, California USA, June
1993.
[22] 李祖枢, 涂亚庆, 仿人智能控制, 國防工業出版社, January,
2003.
[23] 范揚欣, “直線倒單擺於斜面甩上及平衡定位控制”, 國立台灣
科技大學電機工程系, 碩士學位論文, 民國九十四年五月.
[24] L. K. Wong, Frank H.F. Leung, and Peter K.S. Tam, “A Fuzzy
Sliding Controller for Nonlinear System”, IEEE Trans. Indus.
Elec. Vol. 48, No. 1, pp. 32-37, 2001.
[25] 廖文淵.陳育志(譯), C/C++ 程式設計師指南, 全華科技圖書股
份有限公司, July, 2004.
[26] 蔡明志(譯), Visual C++ 6 教學手冊, �眳p資訊股份有限公司,
May, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top