跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/14 12:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳錦宗
研究生(外文):chin-chung chen
論文名稱:小波分析LCD面板瑕疵之研究
論文名稱(外文):A study of defects of LCD panel with wavelet method
指導教授:劉宗平劉宗平引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:112
中文關鍵詞:小波變換液晶顯示器
外文關鍵詞:waveletTFT-LCD
相關次數:
  • 被引用被引用:4
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
在液晶顯示器(LCD)面板的表面上,它是由垂直與水平的規則紋路所構成。所以面板表面上瑕疵的微觀檢測可以採用小波分析技術來進行檢測與分析。由於小波分析具有多尺度(multi-scale)、多解析(multi-resolution)的能力,對多尺度的功能而言,可經由增加解析的階數,可進行局部多個細節與平滑子影像之分析,能夠更有效地分離規則紋路與瑕疵。多解析技術能夠將影像分解成平滑子影像及細節子影像,它可分離影像中重複性之規則紋路與瑕疵。本研究利用小波分析技術中之影像分解與影像重構,以及小波分析的多尺度和多解析之能力,配合影像還原低頻部分(平滑部分)影像來凸顯微觀瑕疵。經實驗結果顯示:本研究方法對LCD面板之微觀瑕疵的檢測具有良好顯著之檢測效果。
On the surface of LCD panel, it consists of the horizontal and vertical regularized-textures. By using the techniques of image decomposition and image restoration scheme of wavelet transform, we can detect the micro-defect on the surface. In automatic surface inspection, the capability of multi-scale and multi-resolution of wavelet ensures that we can use the forward wavelet transform to decompose an original image into smooth and detailed subimages in different multi-resolution levels, and restore specific subimages by using the backward wavelet transform to separate defects from regular textured surfaces. The regular textures here can be structural textures, such as machined surfaces, and statistical textures, such as cast surfaces. By properly selecting the decomposed subimages and the number of multi-resolution levels, the restored image will remove repetitive texture patterns and retain only local anomalies.
In this research we aim at detecting micro-defect by the image decomposition and imagine-restoration of wavelet with multi-scale and multi-resolution. It is evident that our proposed method is really effective for detecting defect of LCD panels through the results of experiments.
書名頁……………………………………………………………… i
中文摘要…………………………………………………………… ii
英文摘要…………………………………………………………… iii
目錄………………………………………………………………… iv
圖錄………………………………………………………………… vii
表錄………………………………………………………………… xi
第一章 緒論……………………………………………………… 1
1.1 研究背景與動機……………………………………………… 1
1.2 研究範圍與目的……………………………………………… 2
1.3 研究方法簡介………………………………………………… 3
1.4 論文架構……………………………………………………… 6
第二章 文獻回顧………………………………………………… 7
2.1小波變換應用於瑕疵檢測與紋路分析……………………… 7
2.2 LCD瑕疵檢測………………………………………………… 10
2.3 表面瑕疵檢測應用分析……………………………………… 13
第三章 小波理論………………………………………………… 16
3.1小波變換的演進……………………………………………… 17
3.1.1 傅立葉變換………………………………………………… 17
3.1.2 短時傅立葉變換…………………………………………… 18
3.1.3 小波變換…………………………………………………… 19
3.2 連續小波分析………………………………………………… 20
3.2.1 小波變換定義……………………………………………… 20
3.2.2 小波變換特點……………………………………………… 23
3.2.3 小波變換的時頻分析特性………………………………… 23
3.2.4 連續小波變換……………………………………………… 24
3.3 離散小波變換………………………………………………… 26
3.4 二維離散小波變換…………………………………………… 30
3.5 多分辨分析…………………………………………………… 32
3.5.1近似空間與細節空間……………………………………… 33
3.5.2多尺度小波分解與重構…………………………………… 33
3.5.3水平與垂直小波變換............................... 34
3.5.4多樣解析二維小波變換…………………………………… 36
第四章 研究方法………………………………………………… 39
4.1研究方法流程………………………………………………… 39
4.2 二維小波分析………………………………………………… 42
4.2.1 二維小波分解……………………………………………… 42
4.2.2 二維小波重構……………………………………………… 46
4.3 小波濾波器…………………………………………………… 47
4.3.1 正交小波變換……………………………………………… 49
4.3.2 双正交小波變換…………………………………………… 50
4.4 小波基函數…………………………………………………… 51
第五章 實驗結果………………………………………………… 57
5.1系統架構與實驗環境………………………………………… 57
5.2影響檢測結果之因素………………………………………… 58
5.2.1 基底函數對瑕疵與規則紋路分離結果之影響…………… 58
5.2.2 多尺度階數增加對瑕疵與規則紋路分離情形…………… 73
5.2.3 基板旋轉對瑕疵檢測結果之影響………………………… 83
5.2.4瑕疵物體面積大小對小波變換之檢測影響……………… 87
5.2.5光源強度變動之影響……………………………………… 89
5.3 各類瑕疵樣本檢測結果……………………………………… 93
5.4 實驗結果之結論.................................... 95
第六章 結論與建議……………………………………………… 97
參考文獻…………………………………………………………… 101
附錄1……………………………………………………………… 106
附錄2……………………………………………………………… 111
[1]S. G. Mallat, “A Theory for Multiresolution Signal Decomposition:The Wavelet Representation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vo1. 11, No. 7, pp. 674-693, 1989.
[2]D. Androutsos, K. N. Plataniotis and A. N. Venetsanopoulos, “Extraction of detailed image regions for content-based imsge retrieval,” Acoustics, Speech and Signal Processing, Vol. 6, pp. 3713-3716, 1998.
[3]A. V. Nevel, “Texture classification using wavelet frame decomposit- ions,” Signal System and Computers, Vol. 1, pp. 311-314, 1997.
[4]N. D. Kim, L. Booth, V. Amin, J. Lim and S. Udpa,“Ultrasonic image processing for tendon injury evaluation,” Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, pp. 241-244, 1998.
[5]C. S. Lee, C. H. Choi, J. Y. Choi and S. H. Choi, “Surface defect inspection of cold rolled strips with features based on adaptive wavelet packets,” IEICE Transactions on Information and Systems , Vol. E80-D, No.5, pp. 594-604, 1997.
[6]A. L. Ahmet, A. Ertuzun and A. Ercil, “Texture defect detection using subb and domain co-occurrence matrices,” Image Analysis and Interpretation, Vol. 1, pp. 205-210, 1998.
[7]H. Sari-Sarraf, and S. J. James, “Robust defect segmentation in woven fsbrics,” Proceedings of the 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 938-944, 1998.
[8]蔣政輝,「應用小波轉換於自動表面瑕疵檢測與圖形比對的應用」,元智大學,碩士論文,民國89年。
[9]蕭缽,「應用小波轉換於表面瑕疵檢測」,元智大學,碩士論文,民國88年。
[10]O. Laligant, F. Truchetet and E. Fauvet, “Wavelets transform in artificial vision inspection of threading,” Industrial Electronics, Control, and Instrumentation, Proceedings of the IECON, Vol. 1, pp. 513-518, 1993.
[11]K. Hwang, S. Mandayam, S. S. Udpa and W. Lord, “Application of wacwlwt basis function neural networks for NDE,” Midwest Symposium on Circuits & Systems. Part 3 (of 3), Vol. 3, pp. 1420-1423, 1996.
[12]Hawthorne. J., “Electro-optics technology test flat-panel displays,”
Automated Testing, May, pp. 271-276, 2000.
[13]Kido. T., “In-process inspection technique for active-matrix LCD panels,” International Test Conference, pp. 795-799, 1992.
[14]Kido. T., “In-process functional inspection technique for TFT-LCD array,” Journal of SID, Vol. 1, No. 4, pp. 429-435, 1993.
[15]Kido. T., “Optical charge-sensing method for testing and characterizing thin-film transistor array,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 1, No. 4, pp. 993-1001, 1995.
[16]Nakashima K., “Hybrid inspection system for LCD color filter panels,” Tenth International Conference on Instrumentation and Measurement Technology, Hamamatsu, pp. 689-692, 1994.
[17]Shimizu, M, A. Ishii, T. Nishimura, “Detection of foreign material included in LCD panels,” 26th Annual Conference of the IEEE: Industrial Electronica Society, Vol. 2, pp. 22-28, 2000.
[18]Zhu, X, W. K. Choi and S. T. Wu, “A simple method for measuring the cell gap of a Reflective twisted nematic LCD,” IEEE Transations on Electron Devices, Vol. 11, pp. 2086-2093, 2002.
[19]Chen P., S. H. Chen and F. C. Su, “An effective method for evaluating the image-sticking effect of TFT-LCDs by interpretative modeling of optical measurement,” Liquid Crystals, Vol. 27, No. 7, pp. 965-975, 2000.
[20]Kim, J. H., S. Ahn., J. W. Jeon, and J. E. Byun, “A high-speed high-resolution vision system for the inspection of TFT LCD, ” IEEE Inyernational Symposium on Industrial Electronics, Vol. 1, pp. 12-16.
[21]陳志忠,「液晶顯示器的像素點缺陷與亮度均一性之自動化檢測」,中原大學,碩士論文,民國90年。
[22]錢志豪,「建構液晶顯示器(LCD)色彩偏差瑕疵之自動化視覺檢測系統之探討」,朝陽科技大學,碩士論文,民國91年。
[23]曾彥馨,「應用機器視覺於TFT面板之表面瑕疵檢測與分類」,元智大學,碩士論文,民國92年。
[24]洪崇祐,「應用一維傅立葉分析於TFT-LCD液晶顯示面板之瑕疵檢測」,元智大學,碩士論文,民國93年。
[25]Tsai, D. M. and C. Y. Hsieh, “Automated surface inspection for directional textures,” Image and Vision Computing, Vol. 18, pp. 49-62, 1999.
[26]Chan, Y. C., K. C. Huang and X. Dai, “Nondestructive defect detection in multiplayer ceramic capacitors using an improved digital speckle correlation method with wavelet packet noise reduction processing,” IEEE Trans. Packaging and Manufacturing Technology, Vol. 46, pp. 80-87, 2000.
[27]Erturk, S. and T. J. Dennis, “Image sequence stabilization based on DFT filtering,” IEE Proc.-Vis. Image Signal Process, Vol. 147, pp. 95-102, 2000.
[28]Park, C. H. and H. Park, “Fingerprint classification using fast fourier transform and nonlinear discriminant analysis,” Pattern Recognition, Vol. 38, pp. 495-503, 2005.
[29]Q. Zheng, R. Chellappa, “A computational vision approach to image registration,” IAPR International Conference on Pattern Recognition, Vol. 1, pp. 193-197, 1992.
[30]Wang, J. and A. K. Asundi, “A computer vision for wineglass defect inspection via Gabor-filter-based texture,” Information Sciences, Vol. 127, pp. 157-171, 2000.
[31]Chan, C. H. and K. H. Pang, “Fabric defect detection by Fourier analysis,” IEEE Trans. on Industry Application, Vol. 36, pp. 1267-1276, 2000.
[32]Amet, A. L., A. Ertuzun and A. Ercil,“Texture defect detection using subband domain co-occurrence,”Proceedings of the IEEE Southwest Symposium on Image Anaalysis and Interpretation, pp. 205-210. 1998.
[33]Chan, C. H. and K. H. Pang, “abric defect detection by Fourier analysis,”IEEE Trans. on Industry Application, Vol. 36, pp. 1267-1276, 2000.
[34]A. Bruce and H. Y. Gao, Applied Wavelet Analysis with S-PLUD, New York; Springer-Verlag, 1996.
[35]T. C. Hsung, P. K. Lun, and W. C. Siu, “A deblocking technique for lock-transform compressed image using wavelet transform modulus maxima,” IEEE Transactions on Image Processing, Vol. 7, No. 10, pp. 1488-1496, 1998.
[36]B. B. Chai, J. Vass, and X. Zhuang, “Significance-linked connected component analysis for wavelet image coding,” IEEE Transactions on Image Processing, Vol. 8, No. 6, pp. 774-784, 1999.
[37]T. C. Hsung, C. L. Chan, P. K. Lun, and D. Feng, “Embedded singularity detection zerotree wavelet coding,” International Conference on Image Processing Proceeding, Vol. 2, pp. 274-278, 1999.
[38]D. Wajcer, D. Stanhill, and Y. Y. Zeevi, “Two dimensional multiwavelets with vanishing moments for image coding,” Mediterranean Electiotechnical Conference, Vol. 1, pp. 72-76, 1998.
[39]S. D. Servetto, K. Ramchandran, and M. T. Orchard, “Image coding based on morphology representation of wavelet data,” IEEE Transactions on Image Processing, Vol. 8, No. p, pp. 1161-1174, 1999.
[40]A. Liew and D. T. Neuyen, “Uniqueness issue of wavelet transform modulus maxima repreaentation and a least squares reconstruction algorithm,” Electron, Vol. 20, pp. 1735-1736, 1995.
[41]S. G. Mallat, “A Theory for Multiresolution Signal Decomposition︰The Wavelet Representation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 11, No.7, pp. 674-693, 1989.
[42]Matlab, Wavelet Toolbox User’s Guide, Mathworks Inc, 2004.
[43]郭晶,孫傳娟,小波分析理論與MATLAB7實現,電子工業出版社,北京,民國94年。
[44]缪紹綱,數位影像處理-活用Matlab,全華科技圖書股份有限公司,4-42~4-53頁,台北,民國94年。
[45]楊建國,小波分析及其工程應用,機械工業出版社,北京,2005.6.
[46]S. Mallat, “Multifrequency channel decompositions of image and wavelet models,”Acoustic Speech and Signal Processing, Vol. 37, pp.
2091-2110, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊