跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 20:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王柏涵
研究生(外文):Bo-Han Wang
論文名稱:適應性小波小腦模型之研究及其在非線性控制與影像壓縮之應用
論文名稱(外文):A Novel Adaptive Wavelet-based-CMAC for Nonlinear Systems Control and Image Compression
指導教授:李慶鴻
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:99
中文關鍵詞:小腦模型小波小腦模型鑑別控制影像壓縮遞迴步階TORA監督控制器預測器
外文關鍵詞:CMACWCMACidentificationcontrolimage compressionbacksteppingTORAsupervisory controllerpredictor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一適應性小波小腦模型(Wavelet-based-CMAC, WCAMC)網路,並將該網路應用到非線性系統鑑別、控制及影像壓縮上。WCMAC網路將小波函數引入小腦模型網路中,取代常用的高斯函數,此外也將T-S型式模糊推論的概念代入網路中,以提升網路對函數的近似能力,此改變使WCMAC網路在學習上不僅收斂快速,且使用之網路節點及參數個數較少。在非線性控制方面,以WCMAC網路為基礎,提出監督式小波小腦模型控制器(Supervisory Wavelet-based-CMAC Controller, SWC),SWC除了擁有WCMAC收斂快速的優點外,亦提出輔助控制器參數調整法則,讓控制器可以根據系統的變化即時調整,得到較佳的收斂速率與控制性能。此外針對非線性TORA(Translational Oscillations with a Rotational Actuator)系統,基於遞迴步階(Backstepping)之概念設計控制器,並結合SWC提出了監督式遞迴步階小波小腦模型控制器(Supervisory Backstepping Wavelet-based-CMAC Controller, SBWC),SBWC結合了遞迴步階控制器與SWC優點,即設計簡單、收斂速度快、擁有好的強健性。此外為顯現WCMAC之優點,本文將其應用於非失真影像壓縮,基於差值脈波編碼調變,以WCMAC網路建構一個智慧型預測器,來提升壓縮效率。最後經由模擬結果可看出,本文提出的方法在各方面確實有不錯的效果。
This thesis proposes an adaptive wavelet-based cerebellar model arithmetic controller (WCMAC) network, and its applications in nonlinear systems identification, control, and image compression. The Gaussian functions of traditional CMAC are replaced by wavelet functions. In addition, properties and advantages of a fuzzy TSK model are used to modify the activation functions of WCMAC. These modifications result small network structure and parameters, highly approximation capability, and fast convergence. For the nonlinear control problem, we propose a supervisory wavelet-based-CMAC controller (SWC) by using WCMAC network. The control performance is improved by the adaptability of SWC even the system is perturbed. Furthermore, by the concept of Lyapunov and backstepping, a controller design procedure is proposed for the nonlinear translational oscillations with a rotational actuator (TORA) system. Combine the advantages of backstepping controller and SWC a supervisory backstepping wavelet-based-CMAC controller (SBWC) is proposed. SBWC has the advantages such as simple design produce, fast convergence, and robustness. In order to show the advantage of WCMAC, it is used to develop an intelligent predictor for lossless image compression. Finally, several simulations are shown to demonstrate the effectiveness of the adaptive WCMAC system.
中文摘要......................................i
英文摘要......................................iii
誌謝......................................iv
目錄......................................v
圖目錄......................................vii
表目錄......................................x

一、 緒論......................................1
1.1 研究動機......................................1
1.2 論文架構......................................3
二、 小腦模型與小波函數之介紹.........................5
2.1 小腦模型理論......................................5
2.1.1 模型之運作......................................5
2.1.2 CMAC記憶體分割方法..............................6
2.1.3 CMAC學習演算法.................................10
2.1.4 可微分的小腦模型控制器.........................10
2.2 小波函數之介紹...................................12
2.2.1 前言.......................................12
2.2.2 Haar小波函數...................................14
三、 小波小腦模型網路介紹及系統鑑別..................17
3.1 小波小腦模型網路.................................17
3.1.1 網路介紹.......................................17
3.1.2 網路分析.......................................20
3.1.3 倒傳遞學習演算法...............................23
3.1.4 穩定性分析.....................................25
3.2 模擬分析:非線性系統之鑑別.......................27
四、 監督式遞迴步階小波小腦模型控制器................35
4.1 監督式小波小腦模型控制器.........................35
4.1.1 問題描述與系統簡介.............................35
4.1.2  控制器之倒傳遞演算法推導......................37
4.1.3 監督控制器的介紹...............................39
4.1.4 濾波器的介紹...................................41
4.1.5  模擬應用分析..................................41
4.2 監督式遞迴步階小波小腦模型控制器應用於TORA系統...59
4.2.1  系統的介紹....................................59
4.2.2 針對TORA系統的遞迴步階推導.....................62
4.2.3 監督式遞迴步階小波小腦模型控制器的架構.........65
4.2.4  模擬應用分析..................................66
五、 智慧型無失真影像壓縮............................80
5.1 影像壓縮的基本概念...............................80
5.2 小波小腦模型預測器...............................83
5.3 模擬與分析.......................................87
六、 結論............................................92
參考文獻..............................................94
[1]J. S. Albus, “A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC),” ASME Journal of Dynamic Systems Measurement and Control, pp. 220-227﹐1975.
[2]J. S. Albus, “Data Storage in the Cerebellar Model Articulation Controller,” ASME Journal of Dynamic Systems Measurement and Control, pp. 228-233, 1975.
[3]P. E. M. Almeida, M. G. Simoes, “Neural Optimal of PEM Fuel Cells with Parametric CMAC Networks,” IEEE Trans. on Industry Appl., Vol. 41, No. 1, pp. 237-2452005.
[4]R. T. Bupp, et al., “Special Issue: A Nonlinear Benchmark Problem,” Int. J. of Robust Nonlinear Control, Edited by D. S. Bernstein, Vol. 8, No. 4, pp. 305-457, John Wiley Sons, 1998.
[5]R. T. Bupp, C. J. Wan, V. T. Cappola, and D. S. Bernstein, “Design of a Rotational Actuator for Global Stabilization of Translational Motion,” Proc. Symp. Active Contr. Vibration Noise, ASME Winter Mtg., pp. 449-456, 1994.
[6]W. J. Chang, C. C. Sun, “Fuzzy Controller Design for Nonlinear TORA Systems,” International Journal of Fuzzy Systems, Vol. 2, No. 1, pp. 60-66, 2000.
[7]W. J. Chang, S. M. Wu, “State Variance Constrained Fuzzy Controller Design for Nonlinear TORA Systems with Minimizing Control Input Energy,” IEEE Conf. Robotics and Automation, Vol. 22, pp. 2616-2621, 2003.
[8]Y. C. Chen, C. C. Teng, “A Model Reference Control Structure Using A Fuzzy Neural Network,” Fuzzy Sets and Systems, Vol. 73, pp. 291–312, 1995.
[9]J. Y. Chen, P. S. Tsai, and C. C. Wong, “Adaptive Design of a Fuzzy Cerebellar Model Arithmetic Controller Neural Network,” IEEE Proc. Control Theory Appl., Vol. 152, No. 2, pp. 133-136, 2005.
[10]C. T. Chiang and C. S. Lin, “Integration of CMAC and Radial Basis Function Techniques,” IEEE International Conference on Intelligent Systems for the 21st, Vol. 4, pp. 3263-3268, 1995.
[11]I. Dauberchies, “Orthonaomal Bases of Compactly Supported Wavelets,” Communications on Pure and Applied Mathematics, Vol. 41, pp. 909-996, 1988.
[12]M. Forti, “Some Extensions of a New Method to Analyze Complete Stability of Neural Network,” IEEE Trans. on Neural Network, Vol. 13, No. 5, pp. 1230-1238, 2002.
[13]H. G. Han, C. Y. Su, and Y. Stepanenko, “Adaptive Control of a Class of Nonlinear Systems with Nonlinearly Parameterized Fuzzy Approximators,” IEEE Trans. on Fuzzy Systems, Vol. 9, No. 2, pp. 315-323, 2001.
[14]M. Hojati, S. Gazor, “Hybrid Adaptive Fuzzy Identification and Control Nonlinear Systems,” IEEE Trans. Fuzzy Syst., pp. 198-210, 2002.
[15]Q. Hong, J. Peng, Z.B. Xu, and B. Zhang, “A Reference Model Approach to Stability Analysis of Neural Networks,” IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 33, No. 6, pp. 925-936, 2003.
[16]M. Jankovic, D. Fontaine, and P. V. Kokotovic, “TORA Example: Cascade- and Passivity-Based Control Designs,” IEEE Trans. on Control Systems Technology, Vol.4, No. 3, pp. 292-297, 1996.
[17]C. F. Juang, “A TSK-Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithms”, IEEE Trans. on Fuzzy Systems, Vol. 10, No. 2, pp. 155-170, 2002.
[18]H. K. Khalil, Nonlinear Systems, 3rd Edition, Prentice Hall, Nj, 2000.
[19]S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and Development of Higher-Order CMAC Neural Networks,” IEEE Contr. Systems, Vol. 12, pp. 23-30, 1992.
[20]C. H. Lee, “Stabilization of Nonlinear Non-minimum Phase Systems: An Adaptive Parallel Approach,” IEEE Trans. on Systems, Man, Cybernetics- Part: B, Vol. 34, No. 2, pp. 1075-1088, 2004.
[21]C. H. Lee, W. Y. Lai, and Y. C. Lin, “A TSK-Type Fuzzy Neural Network (TFNN) Systems for Dynamic Systems Identification,” 42nd IEEE Conference on Decision and Control, Vol. 4, pp. 4002-4007, 2003.
[22]C. H. Lee and Y. C. Lin, “An Adaptive Type-2 Fuzzy Neural Controller for Nonlinear Uncertain Systems,” International Journal of Control and Intelligent systems, Vol. 35, No. 1, pp. 13-25, 2005.
[23]C. H. Lee and C. C. Teng, “Control of Nonlinear TORA System: On-Line Adaptive Approach Using Recurrent Fuzzy Neural Network (RFNN),” The Joint Conf. on AI, Fuzzy System, and Grey System, 2003.
[24]C. H. Lee and C. C. Teng, “Identification and Control of Dynamic Systems Using Recurrent Fuzzy Neural Networks,” IEEE Trans. on Fuzzy Systems, Vol. 8, No. 4, pp. 349-366, 2000.
[25]C. H. Lin, “Adaptive Recurrent Fuzzy Neural Network Control for Synchronous Reluctance Motor Servo Drive,” IEEE Proc. Electr. Power Apll., Vol. 151, No. 6, pp.711-724, 2004.
[26]C. J. Lin, H. J. Chen, and C.Y. Lee, “A Self-Organizing Recurrent Fuzzy CMAC Model for Dynamic System Identification,” IEEE Conference on Fuzzy Systems, Vol. 2, pp. 697-702, 2004.
[27]C. J. Lin, C. C. Chin, “Prediction and Identification Using Wavelet-based Recurrent Fuzzy Neural Networks,” IEEE Trans on System, Man, and Cybernetics-Part B: Cybernetics, Vol. 34, No. 5, pp. 2144-2154, 2004.
[28]C. M. Lin and C. F. Hsu, “Supervisory Recurrent Fuzzy Neural Network Control of Wing Rock for Slender Delta Wings,” IEEE Trans. on Fuzzy Systems, Vol. 12, No. 5, pp. 733-742 2004.
[29]C. M. Lin and C. F. Hsu, “Adaptive Fuzzy Sliding-Mode Control for Induction Servomotor Systems,” IEEE Trans. on Energy Conversion, Vol. 19, No. 2, pp. 362-368, 2004.
[30]F. J. Lin, R. J. Wai, and P. K. Huang, “Two-Axis Motion Control System Using Wavelet Neural Network for Ultrasonic Motor Drives,” IEEE Proc. Electr. Power Appl., Vol. 151, No. 5, pp. 613-621, September 2004.
[31]F. J. Lin, R. J. Wai, and C. C. Lee, “Fuzzy Neural Network Position Controller for Ultrasonic Motor Drive Using Push-Pull DC-DC Converter,” IEEE Proc. Control Theory Appl., Vol. 146, No. 1, pp. 99-107, 1999.
[32]J. C. Lo and Y. H. Kuo, “Decoupled Fuzzy Sliding-Mode Control,” IEEE Trans. on Fuzzy Systems, Vol. 6, pp. 426-435 Aug. 1998.
[33]S. C. B. Lo, H. Li, and M. T. Freedman, “Optimization of Wavelet Decomposition for Image Compression and Feature Preservation,” IEEE Trans. on Medical Imaging, Vol. 22, No. 9, pp. 1141-1151, 2003.
[34]S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. Pattern Anal. and Machine Intelligence, Vol. 11, pp. 674-693, 1989.
[35]C. N. Manikopoulos, “Neural Network Approach to DPCM System Design for Image Coding,” Proc. Inst. Elect. Eng., Vol. 139, No. 5, pp. 501-507, 1992.
[36]M. Mohamadian, E. Nowicki, F. Ashrafzadeh, A. Chu, R. Sachdeva, and E. Evanik, “ A Novel Neural Network Controller and Its Efficient DSP Implementation for Vector-Controlled Induction Motor Drives,” IEEE Trans. on Induster Applications, Vol. 39, No. 6, pp. 1622-1629, 2003.
[37]J. Morlet, G. Arens, I. Fourgeau, and D. Giard, “Wave Propagation and Sampling Theory,” Geophysics, Vol. 47, pp. 203-236, 1982.
[38]C. S. Ouyang, W. J. Lee, and S. J. Lee, “A TSK-Type Neurofuzzy Network Approach to System Modeling Problems,” IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 35, No. 4, pp. 751-767, 2005.
[39]J. P. Ovarlez, L. Vignaud, J. C. Castelli, M. Tria and M. Benidir, “Analysis of SAR Images by Multidimensional Wavelet Transform,” IEE Proc.-Radar Sonar Navig., Vol. 150, No. 4, pp.234-241, 2003.
[40]Y. F. Peng, R. J. Wai, and C. M. Lin, “Implementation of LLCC-Resonant Driving Circuit and Adaptive CMAC Neural Network Control for Linear Piezoelectric Ceramic Motor,” IEEE Trans. on Industrial Electronic, Vol. 51, No 1, pp. 35-48, 2004.
[41]Y. F. Peng, R. J. Wai, and C. M. Lin, “Intelligent Hybrid Control for Uncertain Nonlinear Systems Using a Recurrent Cerebellar Model Articulation Controller,” IEEE Proc. Control Theory Appl., Vol. 151, No. 5, pp. 289-600, 2004.
[42]I. Rojas, H. Pomares, J. Ortega, A. Prieto, “Self-Organized Fuzzy System Generation from Training Examples,” IEEE Trans. on Fuzzy Systems, Vol. 8, No. 1, pp. 23-36, 2000.
[43]T. D. Sanger, “A Tree-Structured Adaptive Network for Function Approximation in High-Dimensional Spaces,” IEEE Transaction on Neural networks, Vol. 2, No. 2, pp. 285-293, 1991.
[44]J. Salo and Y. Neuvo, “A New Two Dimensional Predictor Design for DPCM Coding of Video Signals,” Signal Processing of HDTV. North-Holland, pp. 207-211, 1998.
[45]A. Senyard, E. Kazmierczak, and L. Sterling, “Software Engineering Methods for Neural Networks,” Software Engineering Conference, pp. 468-477, 2003.
[46]C. E. Shannon, Collected Papers: Claude Elmwood Shannon, N. J. A. Sloane and A. D. Wyner, eds., New York: IEEE Press, 1993.
[47]J. J. E. Slotine, W. Li, Applied nonlinear control, Prentice-Hall, Upper Saddle River, NJ, 1991.
[48]N. Sureshbabu, J. A. Farrell, “Wavelet-based System Identification for Nonlinear Control,” IEEE Trans. Autom. Control, Vol. 44, pp. 412-417, 1999.
[49]K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis, A Linear Matrix Inequality Approach, John Wiley & Sons, Inc., 2001.
[50]R. J. Wai, C.M. Lin, and Y. F. Peng, “Adaptive Hybrid Control for Linear Piezoelectric Ceramic Motor Drive Using Diagonal Recurrent CMAC Network,” IEEE Trans. on Neural Networks, Vol. 15, No. 6, pp. 1491-1506, 2004.
[51]R. J. Wai, F.J. Lin, and W.J. Hwang, “A Supervisory Fuzzy Neural Network Control System for Tracking Periodic Inputs,” IEEE Trans. on Fuzzy Systems, Vol. 7, No. 1, pp.41-52, 1999.
[52]C. J. Wan, D. S. Bernstein and V. T. Coppola, “Global Stabilization of the Oscillating Eccentric Rotor,” Proc. 33rd IEEE conf. Decision Control, pp. 4024-4029, 1994.
[53]L. X. Wang, “ A Supervisory Controller for Fuzzy Control Systems that Guarantees Stability,” IEEE Trans. on Automatic Control, Vol. 39, No. 9, pp.1845-1847, 1994.
[54]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability analysis, Prentice-Hall International, 1994.
[55]Y. C. Wang, C.J. Chien, and C. C. Teng, “Direct Adaptive Iterative Learning Control of Nonlinear Systems Using an Output-Recurrent Fuzzy Neural Network,” IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 34, No. 3, pp.1348-1359, 2004.
[56]C. H. Wang, H. L. Liu, and T. C. Lin, “Direct Adaptive Fuzzy-Neural Control with State Observer and Supervisory Controller for Unknown Nonlinear Dynamical Systems,” IEEE Trans. on Fuzzy Systems, Vol. 10, No. 1, pp. 39-49, 2002.
[57]P. J. Werbos, “Backpropagation: past and future,” IEEE International Conference on Neural Networks, Vol. 1, pp. 263-270, 1988.
[58]S. Wu, M. J. Er, “Dynamic Fuzzy Neural Networks-A Novel Approach to Function Approximation,” IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 30, No. 2, pp. 358-364, 2000.
[59]K. Zeng, N. Y. Zhang, and W. L. Xu, “A Comparative Study on Sufficient Conditions for Takagi-Sugeno Fuzzy Systems as Universal Approximators,” IEEE Trans. on Fuzzy Systems, Vol. 8, No. 6, pp. 773-780, 2000.
[60]余松煜、周源華、吳時光, 數位影像處理, 儒林書局, 1993.
[61]李明昌, 影像壓縮技術與應用, 全華書局, 1995.
[62]何庚柱, Haar小波應用於線性時變與非線性系統之系統鑑別, 中正大學機械工程研究所碩士論文, 2003.
[63]邱明輝, TSK型式之遞迴式模糊類神經網路及其應用:使用新型混何演算法GA_BPPSO, 元智大學電機工程研究所碩士論文, 2005.
[64]秦前清, 楊宗凱, 實用小波分析, 西安電子科技大學出版社, 1994.
[65]孫宗瀛、楊英魁, Fuzzy控制理論、實作與應用, 全華書局, 2003.
[66]陳宏謀, 植基於小腦模型補償之狀態回授控制器設計, 台灣師範大學工業教育研究所碩士論文, 2002.
[67]張力祥, 可微分小腦模型用於函數逼近及馬達控制可微分小腦模型, 中原大學電機工程研究所碩士論文, 2002.
[68]楊慶祥, 浮球位置控制系統之設計, 台灣師範大學工業教育研究所碩士論文, 2001.
[69]賴威諭, 應用T-S型式模糊類神經網路於系統鑑別、控制及影像壓縮, 元智大學電機工程研究所碩士論文, 2004.
[70]繆紹綱, 數位影像處理-活用Matlab, 全華書局, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top