(3.239.33.139) 您好!臺灣時間:2021/03/02 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭武輝
研究生(外文):Wu-Hui Cheng
論文名稱:無鉛銲錫成分與綠漆通孔尺寸對FCBGA元件可靠度影響之研究
論文名稱(外文):Investigation of the Lead-free Solder Compositions and the Solder Mask Opening Sizes on the Reliability of the FCBGA Components
指導教授:陳永樹陳永樹引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:93
中文關鍵詞:有限元素分析疲勞壽命無鉛銲錫綠漆通孔尺寸覆晶球柵陣列構裝彎曲測試
外文關鍵詞:Bend testFatigue lifeFCBGAFEALead-free solderSolder mask opening size
相關次數:
  • 被引用被引用:9
  • 點閱點閱:447
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
FCBGA元件因具備高效能及高腳數之特性,因而成為構裝技術之主流,而電路板層級元件之失效位置常見於銲錫接點處。由於近年綠色科技之倡導及歐盟法規限定,無鉛銲錫如錫銀銅合金已廣泛應用於錫球接點之材質,因此本研究即針對63Sn37Pb、Sn3.0Ag0.5Cu及Sn4.0Ag0.5Cu三種錫球材質之FCBGA元件進行可靠度彎曲測試,並藉由韋伯分佈探討其可靠度行為之差異。
研究結果指出於循環彎曲測試中,無鉛銲錫之元件相較於錫鉛共熔合金提供較高之平均壽命,但其元件具有變異性較大之壽命分佈。而於一次下壓彎曲測試中,則後者材質具有較佳之抗彎矩強度。此外本研究亦探討0.4 mm及0.525 mm兩種綠漆通孔尺寸對於FCBGA元件可靠度之影響,結果得知無論銲點材質為何?0.525 mm之綠漆通孔尺寸設計皆具有較高之可靠度。此外,並於循環彎曲測試後,統計其失效位置及失效模式,得知0.4 mm綠漆通孔尺寸之失效位置位於錫球上方靠近基板處,而0.525 mm綠漆通孔尺寸之失效位置則為錫球下方靠近電路板之位置。而於一次下壓彎曲測試之失效模式,則兩者之破壞位置相同,皆為錫球下方之銲墊與電路板界面破裂而剝離。
此外,於有限元素分析中計算角落錫球於循環彎曲測試之塑性應變區間並計算其疲勞壽命。其估算結果相符於彎曲測試之平均壽命,因而證實有限元素模型之正確性。而藉由分析所得之累積應變能密度,結合循環彎曲測試之結果,得以建構本研究中FCBGA元件之疲勞壽命模型,並適用於計算不同綠漆通孔尺寸之累積應變能密度,藉此得知FCBGA元件之綠漆通孔尺寸與疲勞壽命之關係。而研究結果對於封裝結構設計之可靠度工程極具應用價值。
FCBGA components provide higher I/O counts and better performance, and become the major trend in the recent packaging technologies developed. The failure locations of the board level assembly are frequently observed at the solder connections. Also, due to the environmental concern and the green electronics regulations, the lead-free solder alloy such as Sn-Ag-Cu is often used to replace the traditional tin-lead solder alloy in the electronic applications. This study then focuses on the investigation of reliability differences for the FCBGA components with 63Sn37Pb, Sn3.0Ag0.5Cu, and Sn4.0Ag0.5Cu as the materials of the solder balls.

The results indicate that in the cyclic bend test, the FCBGA components with lead-free solder have the better average fatigue life than those with tin-lead solder. However, the results for the former have more variations than the latter. But in the monotonic test, the latter is better in resisting the bending forces. Also, the package design with 0.4 mm and 0.525 mm solder mask (S/M) opening sizes were also studied with the bend test. The results show that FCBGA components with larger opening sizes perform better in their reliability. Moreover, the failure locations and failure modes of FCBGA component under the cyclic bend test are identified with the failure analysis. The results reveal that the failure locations for 0.4 mm S/M opening size are at the top of the solder ball on the substrate side and are at PCB side for those with 0.525 mm S/M openings. On the contrary, for all the tests, those failures in the monotonic tests are pretty much the same to occur at lower locations on the PCB side at the interface of the solder pad and PCB itself.

Finally, the finite element analysis (FEA) is used to calculate the plastic strain range of the corner solder balls under the cyclic bend test. Later, by combining the results with the fatigue model to predict the reliability of solder joint, it is found that the analyzed results are consistent with the failure mode analysis and test statistics. This indicates that the FEA Model is accurate enough and could be applied further. It is then used to calculate the plastic strain energy density accumulated per bending cycle within the critical solder joint and the results is also compared with the experimental results. The resulting fatigue model for the FCBGA component is then obtained. It is then possible to use this model to change the solder mask opening sizes in predicting the corresponding fatigue life. The results are believed to be worthy for the application in the FCBGA component reliability assessment.
中文摘要..................................................i
英文摘要.................................................ii
誌謝.....................................................iv
目錄......................................................v
表目錄.................................................viii
圖目錄...................................................ix
符號說明...............................................xiii
第一章 緒論..............................................1
1.1 前言.................................................1
1.2 文獻回顧.............................................3
1.2.1 封裝結構對可靠度之影響............................3
1.2.2 錫球材質對可靠度之影響............................7
1.2.3 測試條件對可靠度之影響............................9
1.3 研究目的............................................11
第二章 理論架構.........................................12
2.1 可靠度理論..........................................12
2.2 疲勞壽命理論........................................14
2.3 覆晶球柵陣列構裝之數學模型..........................15
2.3.1 複合樑理論.......................................15
2.3.2 覆晶球柵陣列構裝於四點彎曲之撓度方程.............17
第三章 彎曲測試與結果...................................24
3.1 彎曲測試之試片簡介..................................24
3.2 彎曲測試規範(IPC/JEDEC-9702)........................28
3.3 彎曲測試設備與架構..................................33
3.4 ㄧ次下壓彎曲測試....................................34
3.5 循環彎曲測試........................................38
第四章 失效模式分析.....................................44
4.1 失效分析流程........................................44
4.2 失效分析設備架構....................................46
4.3 ㄧ次下壓彎曲測試之失效模式..........................47
4.4 循環彎曲測試之失效模式..............................50
第五章 有限元素分析.....................................56
5.1 覆晶球柵陣列構裝尺寸及參數化有限元素模型............56
5.2 材料性質及硬化法則..................................62
5.3 分析模型之正確性....................................65
5.4 錫球疲勞壽命之估算..................................68
第六章 結果與討論.......................................71
6.1 韋伯分佈可靠度分析..................................71
6.2 失效模式分析........................................73
6.3 覆晶球柵陣列構裝元件之疲勞模型......................77
6.4 綠漆通孔尺寸對可靠度之影響..........................81
第七章 未來展望.........................................87
參考文獻.................................................88
1.R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, ed., Micro- electronics Packaging Handbook: Technology Drivers, Second Ed., Chapman and Hall, New York, 1996, 11-114.
2.J. H. Lau and Y. H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York, 1997, 1-10.
3.A. Skipor and L. Leicht, “Mechanical Bending Fatigue Reliability and Its Application to Area Array Packaging,” Proc. Electron. Compon. Techol. Conf., Orlando, FL., 2001, 606-612.
4.P. J. Zheng, et al., “Solder Joint Reliability of TFBGA Assemblies with Fresh and Reworked Solder Balls,” Microelectron. Reliab., 43(2003), 6, 925-934.
5.S. C. Hung, et al., “The Comparison of Solder Joint Reliability between BCC++ and QFN,” Proceedings of the Electronic Components and Technology Conference, Orlando, FL., 2001, 1052-1058.
6.K. Jonnalagadda, “Reliability of Via-in-Pad Structures in Mechanical Cycling Fatigue,” Microelectron. Reliab., 42(2002), 2, 253-258.
7.J. W. Fan, C. T. Kuo and M. C. Yip, “Mechanical Characterization of Board-Level 63Sn37Pb and Lead-free Solder Sphere Attachment on Cu-Pad/Ni/Au Surface Finish Substrate,” Proceedings of the Electronics Packaging Technology Conference, Singapore, 2003, 712-717.
8.J. D. Wu, et al., “Board Level Reliability of a Stacked CSP Subjected to Cyclic Bending,” Microelectron. Reliab., 42(2002), 3, 407-416.
9.P. Lall, et al., “Model for BGA and CSP Reliability in Automotive Underhood Application,” IEEE Trans. Compon. Packag. Technol., 27(2004), 3, 585-593.
10.L. Zhang, S. S. Chee and A. Maheshwari, “Effect of Solder Ball Pad Design on Cavity Down BGA Solder Joint Reliability,” Proc. Electron. Compon. Techol. Conf., San Diego, CA., 2002, 1001-1006.
11.P. L. Tu, Y. C. Chen and K. C. Hung, “Reliability of microBGA Assembly Using No-Flow Underfill,” Microelectron. Reliab., 41(2001), 12, 1993-2000.
12.P. Lall and Banerji K., “Assembly-Level Reliability of Flex-Substrate BGA, Elastomer-on-Flex Packages and 0.5mm Pitch Partial Array Packages,” Microelectron. Reliab., 40(2000), 7, 1081-1095.
13.S. C. Hung, et al., “Board Level Reliability of PBGA Using Flex Substrate,” Microelectron. Reliab., 41(2001), 5, 677-687.
14.T. Hirano, et al., “Reliability of Lead Free Solder Joint by Using Chip Size Package,” Proceedings of the IEEE International Symposium on Electronics and the Environment, Denver, CO, 2001, 285-289.
15.P. Geng, P. Chen and Y. Ling, “Effect of Strain Rate on Solder Joint Failure under Mechanical Load,” Proc. Electron. Compon. Techol. Conf., San Diego, CA, 974-978.
16.M. Amagai, Toyoda Y. and Tajima T., “High Solder Joint Reliability with Lead Free Solders,” Proc. Electron. Compon. Techol. Conf., New Orleans, LA, 2003, 317-322.
17.F. Qi and J. Liu, “Research on Failure Modes of BGA Assemblies with Lead-Free Solder on Different PCB Materials,” Proceedings of the IEEEInternational Conference on Electronic Packaging Technology, Shanghai, China, 2003, 396-400.
18.S. R. Tzan and S. L. Chu, “Characterization of Lead-Free Solder by Reliability Testing,” Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology Symposium, Santa Clara, CA, 2000, 270-273.
19.P. Geng, et al., “Alternative Lead-Free Solder Joint Integrity under Room Temperature Mechanical Load,” Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, Les Vegas, NV, 2004, 304-309.
20.K. Jonnalagadda, F. Qi and J. Liu, “Mechanical Fatigue Reliability of PBGA Assemblies with Lead-free Solder and Halogen-free PCBs,” Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, Les Vegas, NV, 2004, 165-170.
21.S. Shetty, et al., “Fatigue of Chip Scale Package Interconnects Due to Cyclic Bending,” Trans. ASME, J. Electron. Packag., 123(2001), 3, 302-308.
22.P. L. Tu, et al., “Comparative Study of Micro-BGA Reliability under Bending Stress,” IEEE Trans. Adv. Packag., 23(2000), 4, 750-756.
23.B. Torres-Montoya, et al., “Effects of Combined Cyclic Thermal and Mechanical Loading on Fatigue of Solder Joints,” Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, Les Vegas, NV, 2004, 280-286.
24.張正忠,「產品加速壽命測試規劃之研究--以8025無刷直流風扇為例」,碩士論文,國立高雄第一科技大學機械與自動化工程所,2004。
25.鍾昆原,「7005擠製鋁合金的拉伸與疲勞性質研究」,碩士論文,國立中央大學機械工程研究所,2002。
26.William D. Callister, Materials Science and Engineering, Jr. Callister(ed.), Third Ed., Wiley and Sons, New York, 1994, 201-205.
27.W. J. Plumbridge, R. J. Matela and A. Westwater, Structural Integrity and Reliability in Electronics: Enhancing Performance in a Lead-Free Environment, Kluwer Academic, Dordrecht, 2003, 217-238.
28.A. Bedford and K. M. Liechti, Mechanics of Materials, Prentice-Hall, Upper Saddle River, New Jersey, 2000, 325-408.
29.R. C. Hibbeler, Mechanics of Materials, Sixth Ed., Prentice-Hall, Upper Saddle River, New Jersey, 2005, 324-326.
30.J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, 1996, 126-127.
31.劉振南,「無底膠新型覆晶封裝結構之設計與可靠度分析」,碩士論文,國立清華大學動力機械工程學系,2001。
32.H. L. Lau, Ball Grid Array Technologies, McGraw-Hill, New York, 1995, 309-310.
33.“IPC Specification Tree,” IPC Standards, Association Connecting Electronics Industries, 2005<http://www.ipc.org>.
34.IPC/JEDEC-9702 Monotonic Bend Characterization of Board-Level Interconnects, 2004.
35.P. Geng, et al., “0.8mm BGA Solder Joint Reliability under Flexural Load,” Proceedings of the SMTA International Conference, Chicago, IL, 2004, 271-278.
36.A. Bansal, S. Yoon and V. Mahadev, “Flexural Strength of BGA Solder Joints with ENIG Substrate Finish Using 4-Point Bend Test,” Proceedings of the SMTA International Conference, Kauai, HI, 2005.
37.K. Jonnalagadda, F. Qi and J. Liu, “Mechanical Bend Fatigue Reliability of Lead-Free and Halogen-Free PBGA Assemblies,” IEEE Trans. Compon. Packag. Technol., 28(2005), 3, 430-434.
38.D. T. Rooney, et al., “Materials Characterization of the Effect of Mechanical Bending on Area Array Package Interconnects,” Microelectron. Int., 20(2003), 1, 34-42.
39.A. Yeo, et al., “Flip Chip Solder Joint Fatigue Analysis Using 2D and 3D FE Models,” Proceedings of the Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, Brussels, Belgium, 2004, 549-555.
40.Bret A. Zahn, “Solder Joint Fatigue Life Model Methodology for 63Sn37Pb and 95.5Sn4Ag0.5Cu Materials,” Proc. Electron. Compon. Technol. Conf., New Orleans, LA, 2003, 89-94.
41.ANSYS Release 8.0 Documentation.
42.W. W. Lee, L. T. Nguyen and G. S. Selvaduray, “Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages,” Microelectron. Reliab., 40(2000), 2, 231-244.
43.C. Andersson, et al., “Comparison of Isothermal Mechanical Fatigue Properties of Lead-Free Solder Joints and Bulk Solders,” Mater. Sci. Eng. A, 394(2005), 1, 20-27.
44.W. H. Zhu, et al., “Comparative Study on Solder Joint Reliability Using Different FE-Models,” Proceedings of the Electronics Packaging Technology Conference, Singapore, 2003, 687-694.
45.蔡翰輝,「晶圓級封裝在循環彎曲負載測試下之可靠度分析」,碩士論文,國立中山大學機械與機電工程研究所,2004
46.Hwa Teng Lee, et al., “Reliability of Sn-Ag-Sb lead-free solder joints,”Materials Science & Engineering A, 407(2005), 2, 36-44.
47.Robert Darveaux, “Effect of simulation methodology on solder joint crack growth correlation,” Proc. Electron. Compon. Technol. Conf., Las Vegas, NV, 2000, 1048-1058.
48.Ahmer Syed, “Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints,” Proc. Electron. Compon. Technol. Conf., Las Vegas, NV, 2004, 737-746.
49.Yi Shao Lai, et al., ”A study of cyclic bending reliability of bare-die-type chip scale packages,” Proceeding of the Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, Brussels, Belgium, 2004, 313-316.
50.T. Y. Tee and Z. Zhong, “Board Level Solder Joint Reliability Analysis and Optimization of Pyramidal Stacked Die BGA Packages,” Microelectron. Reliab., 44(2004), 12, 1957-1965.
51.Kuo Ning Chiang and Chang An Yuan, “An Overview of solder bump shape prediction algorithms with validations,” IEEE Trans. Adv. Packag., 24(2001), 2, 158-162.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔