跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/06 01:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉子吉
研究生(外文):Tzu-Chi Liu
論文名稱:發展一模糊比例微分控制器最佳化演算法於工程最佳化問題
論文名稱(外文):Developing a Fuzzy Proportional-Derivative Controller Optimization Engine for Engineering Optimization Problems
指導教授:徐業良徐業良引用關係
指導教授(外文):Yeh-Liang Hsu
學位類別:博士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:167
中文關鍵詞:最佳化工程最佳化演算法模糊控制器
外文關鍵詞:OptimizationEngineering Optimization ProblemsFuzzy Controller
相關次數:
  • 被引用被引用:0
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一模糊比例微分控制器最佳化演算法以解決工程最佳化問題,工程設計問題通常有兩個特性:設計變數在目標函數與限制條件常具有單調性。而且,此目標函數與限制條件常為內隱式函數,也就是不能以設計變數來表示其外顯形式。
傳統的數值最佳化演算法在處理工程最佳化問題時將其視為一單純的數學問題,而工程方面的相關知識往往將其忽略,發展此模糊比例微分控制器最佳化演算法於工程最佳化問題,此動機為取代使用單純數值資訊來獲得新的迭代設計點,並運用模糊規則將工程知識如設計變數的單調性與限制條件的有效性,導入至最佳化演算法之中。
本論文發展此模糊比例微分控制器最佳化演算法透過三個階段,在前兩個階段之中,此最佳化演算法使用一最佳化準則方法來解決特定的工程最佳化問題。在第三階段中,則是將此模糊比例微分控制器最佳化演算法應用至一般的工程最佳化問題上,而此問題具有單調性的特性,並且,這些應用的工程最佳化問題亦常見於文獻之中來驗證最佳化演算法的實用性,最後,運用本論文發展的模糊比例微分控制器最佳化演算法都可成功的獲得最佳解,且在不同的初始值與移動限制下此最佳化演算法亦有不錯的強健性。
This paper proposes a fuzzy proportional-derivative (PD) controller optimization engine for engineering optimization problems. Engineering design problems have two characteristics: the design variables are often monotonic in the objective function and constraints. Moreover, the objective function and constraints are often implicit functions which cannot be expressed explicitly in terms of design variables.
Traditional numerical optimization algorithms treat engineering optimization problems as pure mathematical problems. Engineering heuristics are totally ignored. The idea of using the fuzzy PD controller in engineering optimization is that, instead of using purely numerical information to obtain the new design point in the next iteration, engineering knowledge, such as monotonicity of the design variables and activities of the constraints, are be modeled in the optimization algorithm using fuzzy rules.
The fuzzy PD controller optimization engine is developed through three stages. In the first two stages, the optimization engine is applied to solve engineering optimization problems with optimality criteria methods. In the third stage, the fuzzy PD controller optimization engine is extended to apply on more general engineering optimization problems with monotonicity. Several engineering design optimization problems commonly seen in research literature are used to demonstrate the practicality of the fuzzy PD controller optimization engine. Numerical optimal solutions are successfully obtained in all problems. The fuzzy PD controller seems to be robust to various initial design points and move limits.
Chapter 1. Introduction 1
Chapter 2. The concept of fuzzy proportion-derivative controller optimization engine 5
2.1 Fuzzy optimization 5
2.2. The concept of fuzzy PD controller optimization engine 7
Chapter 3. The First stage development of the fuzzy PD controller optimization engine 10
3.1. The procedure of fuzzy PD controller optimization engine 10
3.2 A structural optimization example 11
3.2.1 Preparing the optimization model 11
3.2.2 Preparing the fuzzy PD controller 12
3.2.3 Defining the initial values and parameters 13
3.2.4 The optimum results 14
3.3 A blow moulding process parameter optimization example 17
3.3.1. Preparing the optimization model 18
3.3.2 Preparing the fuzzy PD controller 19
3.3.3 Defining the initial values and the fuzzy data 20
3.3.4. The optimum results 20
3.4 Discussion 23
3.4.1 Comparison with the fully stressed design method 23
3.4.2 Using different quantization values of inputs and outputs 26
Chapter 4. The second stage development of the fuzzy PD controller optimization engine 32
4.1 Monotonicity Analysis 32
4.2 A hydraulic cylinder design optimization example 34
4.2.1 Formulating the optimization model 34
4.2.2 Monotonicity Analysis and the preparation of optimization criterion 35
4.2.3 Preparing the fuzzy PD controller 39
4.2.4 Defining the initial values and parameters 42
4.2.5 The optimization results 44
4.3 A vehicular jack design optimization example 47
4.3.1 Formulating the optimization model 47
4.3.2 Monotonicity Analysis and preparation of the optimization criterion 48
4.3.3 Defining the initial values and parameters 55
4.3.4 The optimization results 57
4.4 An air tank design optimization example 61
4.4.1 Formulating the optimization model 61
4.4.2 Monotonicity Analysis and preparation of the optimization criterion 62
4.4.3 Defining the initial values and parameters 66
4.4.4 The optimization results 67
4.5 Discussion 69
4.5.1 Using different initial values of the design variables 69
4.5.2 Comparison with the fuzzy proportional control optimization engine 72
4.5.3 Conclusion of this chapter 73
Chapter 5. The third stage development of the fuzzy PD controller optimization engine 75
5.1 The fuzzy PD controller optimization engine for more general engineering design optimization problems 75
(1) For design variables with one critical constraints 77
(2) For design variables with a conditionally critical set 78
(3) For design variables whose monotonicity signs are “indeterminate” in the objective function of the final monotonicity table output by MONO 78
5.2 An air tank design optimization problem 78
5.2.1 Formulating the optimization model 78
5.2.2 Monotonicity Analysis 80
5.2.3 Preparing the fuzzy PD controller 84
5.2.4 Defining the initial values and move limits of the design variables 87
5.2.5 The optimization results 89
5.3 A vehicular jack design optimization problem 94
5.3.1 Formulating the optimization model 94
5.3.2 Monotonicity Analysis 96
5.3.3 Defining the initial values and move limits of the design variables 100
5.3.4 The optimization results 102
5.4 Discussion 107
Chapter 6. Engineering design optimization examples 112
6.1 Three-bar truss design optimization problem 112
6.1.1 Formulating the optimization model 112
6.1.2 Monotonicity Analysis 114
6.1.3 Defining the initial values and move limits of the design variables 116
6.1.4 The optimization results 116
6.2 A tension/compression spring design optimization problem 118
6.2.1 Formulating the optimization model 118
6.2.2 Monotonicity Analysis 119
6.2.3 Defining the initial values and move limits of the design variables 121
6.2.4 Optimization Results 122
6.3 Tubular column design optimization problem 123
6.3.1 Formulating the optimization model 123
6.3.2 Monotonicity Analysis 125
6.3.3 Defining the initial values and move limits of the design variables 127
6.3.4 The optimization results 128
6.4 Welded beam design optimization problem 129
6.4.1 Formulating the optimization model 129
6.4.2 Monotonicity Analysis 132
6.4.3 Defining the initial values and move limits of the design variables 134
6.4.4 The optimization results 135
6.5 Speed reducer design optimization problem 137
6.5.1 Formulating the optimization model 137
6.5.2 Monotonicity Analysis 141
6.5.3 Defining the initial values and move limits of the design variables 144
6.5.4 The optimization results 145
6.6 Heat exchange design optimization example 148
6.6.1 Formulating the optimization model 148
6.6.2 Monotonicity Analysis 151
6.6.3 Defining the initial values and move limits of the design variables 154
6.6.4 The optimization results 155
Chapter 7. Conclusions and discussion 158
Reference 161
Biography 165
Arabshahi, P., Choi, J. J., Marks, R. J. II, and Caudell, T. P., 1996, “Fuzzy parameter adaptation in optimization: some neural net training examples,” IEEE Computational Science & Engineering, Vol. 3, No. 1, pp. 57-67.
Arakawa, M. and Yamakawa, H., 1990, “Study on the optimum design applying qualitative reasoning,” Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 56, No. 522, pp398-403.
Arora, J. S., 1989, “Introduction to optimum design,” McGraw-Hill, New York.
Avriel, M., and Williams, A. C., 1971, “An extension of geometric programming with application in engineering optimization,” Journal of Engineering Mathematics, Vol. 5, pp. 187-194.
Azarm, S., and Li, W. C., 1988, “Multi-level optimization based design procedure using global Monotonicity Analysis,” ASME, Design Engineering Division DE, Vol. 14, pp. 115-120.
Bekkman, R.E. and Zadeh, L.A., 1970, “Decision-making in a fuzzy environment,” Management Science, Vol. 17, No. 4, pp. 141-164.
Belegundu, A. D., 1982, “A study of mathematical programming methods for structural optimization,” Department of Civil and Environmental Engineering, University of Iowa City, Iowa.
Coello, C. A. C., and Montes, E. M., 2002, “Constraint-handling in genetic algorithm through the use of dominance-based tournament selection,” Advanced Engineering Informatics, Vol. 16, pp. 193-203.
Deshpande, A.D, and Rinderle, J.R, 2003,”Constraint dominance methods applied to the design of a linear motor,” 2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering, September, 2003, Chicago, IL, United States.
Diraddo, R.W. and Garcia-Rejon, A., 1993, “Profile optimization for the prediction of initial parison dimensions from final blow molded part specifications,” Computers & Chemical Engineering, Vol. 17, No. 8, pp. 751-764.
Gobbi, M. and Mastinu, G., 2001, “Analytical description and optimization of the dynamic behaviour of passively suspended road vehicles,” Journal of Suound and Virbation, Vol. 245, No. 3, pp.457-481.
Golinski, J., 1973, “An adaptive optimization system applied to machine synthesis,” Mechanism and Machine Synthesis, Vol. 8, pp. 419-436.
Grignon, P., and Fadel, G.M., 1994, “Fuzzy move limit evaluation in structure optimization,” AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach, Florida.
Guan, X., Liu, W.H., and Papalexopoulos, A.D., 1995, “Application of a fuzzy set method in an optimal power flow,” Electric Power Systems Research, Vol. 34, No. 1, pp. 11-18.
Hsu, Y L., 1993, “Notes on Interpreting Monotonicity Analysis using Karush Kuhn Tucker Conditions, and MONO - A Logic Program for Monotonicity Analysis,” ASME Design Technical Conferences, 22nd Design Automation Conference, Albuquerque, New Mexico, USA, September 1993, Advances in Design Automation, vol. 2, pp. 243-252.
Hsu, Y. L., Lin, Y. F. and Guo, Y. S., 1995, “A fuzzy sequential linear programming algorithm for engineering design optimization,” ASME 21st Annual Design Automation Conference, Advances in Design Automation, Vol. 82, No. 1, pp. 455-462.
Hsu, Y. L., Lin, Y. F. and Sun, T. L., 1995, “Engineering design optimization as a fuzzy control process,” International Joint Conference of the 4th IEEE International Conference on Fuzzy Systems and the 2nd International Fuzzy Engineering Symposium, No. 4, pp. 2001-2008.
Hsu, Y. L., Steele, C. R., and Sheppard, S. D., 1994, “Fully stressed thickness profile design at discontinuities of axisymmetric shells,” Structural Optimization, Vol. 7, No. 3, pp. 199-205.
Inuiguchi, M., and Ramil, J., 2000, “Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem,” Fuzzy Sets and Systems, Vol. 111, No. 1, pp. 3-28.
Laroche, D., DiRaddo, R. W., and Aubert, R., 1996, “Process modeling of complex blow-molded parts,” Plastics Engineering, Vol. 52, No. 12, pp.37-39.
Laroche D., Kabanemi K., Pecora L., and DiRaddo R., 1999, “Integrate numerical modeling of the blow molding process,” Polymer Engineering & Science, Vol. 39, No. 7, pp. 1223-1233.
Lee, D. K. and Soh, S. K., 1996, “Prediction of optimal perform thickness distribution in blow molding,” Polymer Engineering and Science, Vol. 36, No. 11, pp. 1513- 1520.
Luhandjula, M.K., 1989, “Fuzzy optimization: An appraisal,” Fuzzy Sets and Systems, Vol. 30, No. 3, pp. 257-282.
Mulkay, E. L. and Rao, S. S., 1998, “Fuzzy heuristics for sequential linear programming,” Journal of Mechanical Design, Transactions of the ASME, Vol. 120, No. 1, pp. 17-23.
Mukuda, M., and Tsujimura, Y., and Gen, M., 2005, “Optimization of multiobjective system reliability design using FLC controller GA,” Transactions of the Institute of Electrical Engineers of Japan, Part C, Vol. 125-c, No. 4, pp. 623-630.
Papalambros, P., 1979, “Monotonicity Analysis in Engineering Design Optimization,” PhD dissertation, Design Division, Mechanical Engineering, Stanford University, Stanford, California.
Papalambros, P., 1993, “Remarks on Sufficiency of Constraint-Bound Solutions in Optimal Design,” ASME Journal of Mechanical Design, Vol. 115, pp. 374-379.
Papalambros, P., and Wilde D. J., 2000, “Principles of Optimal Design – Modeling and Computation,” 2nd Ed., Cambridge University Press.
Ragsdell, K. M. and Phillips, D. T., 1976, “Optimal design of a class of welded structures using geometric programming,” ASME Journal of Engineering for Industry, Vol. 98, pp. 1021-1025.
Rao, S. S., 1987, “Multiobjective optimization of fuzzy structure system,” International Journal for Numerical Methods in Engineering, Vol. 24, pp. 1157-1171.
Rao, S. S., 1996, “Engineering Optimization: Theory and Practice, 3rd Ed.”, John Wiley & Sons, Inc.
Rao, S.S., Sundararaju, K., Prakash, B.G., and Balakrishna, C., 1992, “Fuzzy goal programming approach for structural optimization,” AIAA Journal, Vol. 30, No. 5, pp.1425-1432.
Sarma, K.C. and Adeli, H., 2000, “Fuzzy discrete multicriteria cost optimization of steel structures,” Journal of structural engineering, Vol. 126, No. 11, pp. 1339-1347.
Shigley, J.E. and Mischke, C.R., 2001, “Mechanical Engineering Design,” McGraw-Hill, New York, 6th ed.
Trabia, M.B. and Lu, X.B., 2001, “A fuzzy adaptive simplex search optimization algorithm,” Journal of Mechanical Design, Transactions of the ASME, Vol. 123, No. 1, pp. 17-23.
Unklesbay, K., Staats, G.E., and Creighton, D.L., 1972, “Optimal design of pressure vessels,” ASME Paper, No. 72-PVP-2, 1972.
Vanderplaats, G. N., 1993, “Numerical optimization techniques for engineering design with Applications,” McGraw-Hill.
Wilde, D. J., 1975, “The Monotonicity and Dominance in Optimal Hydraulic Cylinder Design,” ASME Journal of Engineering for Industry, Vol. 97, pp. 1390-1394.
Wilde, D. J., 1992, “Product quality in optimization models,” American Society of Mechanical Engineers, Design Engineering Division DE, Vol. 42, pp. 237-241.
Xiao, G., Malkin, S., Danai, K., 1993, “Autonomous system for multistage cylindrical grinding,” Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 115, No. 4, pp. 667-672.
Xiong Y., and Rao, S.S., 2003, “Fuzzy nonlinear programming for mixed-discrete design optimization through hybrid genetic algorithm,” Fuzzy Sets and Systems, Vol. 146, No. 2, pp. 167-186.
Xiong Y., and Rao, S.S., 2005, “A fuzzy dynamic programming approach for the mixed-discrete optimization of mechanical systems,” Transactions of the ASME, Journal of Mechanical Design, Vol. 127, No. 6, pp. 1088-1099.
Zadeh, L.A., 1965, “Fuzzy sets,” Information and Control, Vol. 8, pp.338-353.
Zimmermann, H.J., 1991, “Fuzzy sets theory and its application,” Kluwer Academic Publishers, 2nd Ed.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top