(3.238.186.43) 您好!臺灣時間:2021/03/01 14:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李宸岳
研究生(外文):Chen-Yueh Li
論文名稱:高溫處理和化學改質之多壁奈米碳管對有機蒸氣吸附效能研究
論文名稱(外文):Study of the absorption of organic vapor on multi-walled carbon nanotubes with heat treatment or chemical modification
指導教授:江右君江右君引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:98
中文關鍵詞:多壁奈米碳管高溫處理化學改質吸附
外文關鍵詞:Multi-walled carbon nanotubesHeat treatmentChemical modificationAdsorption
相關次數:
  • 被引用被引用:1
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米科技的新材料-奈米碳管具有奈米尺度的中空孔隙、大的比表面積和許多優異的特性,被視為是一種極具潛力的儲氣材料。若大量氫氣吸附在碳管管壁,則可成為燃料電池的儲氫材料。若將奈米碳管有效地用以吸附氣體或有機蒸氣,將對能源儲存、氣體感測和污染防治有相當地貢獻。本研究的目的將用改質技術提高奈米碳管吸附有機蒸氣的吸附行為和效能。
本研究選用商用的多壁奈米碳管以高溫處理和化學改質進行改質,並可藉由許多表面的檢測技術得知奈米碳管之表面物化特性。隨後,以苯蒸氣當作吸附質進行奈米碳管對有機蒸氣的吸附實驗,進而探討有機蒸氣的濃度對奈米碳管的吸附效益,由此吸附實驗的結果利用過去研究學者提出的經驗模式進行模擬,並建立適合的經驗模式來說明奈米碳管之動態吸附曲線。
由研究結果發現:由FESEM影像得知樣本為細長且彎曲的表面結構,進一步從TEM影像能觀察到奈米碳管為中空管結構,部分改質後的樣本因受到破壞而出現長度變短。所有奈米碳管樣本的晶面間距約為3.4 Å,該空間可視為平行板所構成的狹縫形微孔;此間距會因改質過程而出現些微改變。奈米碳管樣本表面、末端開口或是缺陷上的含氧官能基對樣本吸附苯蒸氣之效能可能會造成相當的影響。由拉曼光譜得知改質可能破壞奈米碳管石墨化程度。
氮氣等溫吸附/脫附曲線得知奈米碳管為多孔性的吸附劑,其吸附的位置可能為類似平板狀構造或裂縫狀孔隙;經高溫處理和部分經化學改質的樣本,其比表面積和總孔體積都有增加的趨勢;化學改質的樣本改善了微孔之特性,微孔逐漸擴大,且出現新微孔。
原奈米碳管或是各種改質條件的樣本在16400 ppm苯蒸氣的吸附環境中,以高溫處理或是混酸溶液進行改質的奈米碳管擁有較佳的吸附效能。在不同濃度的吸附環境中亦以高溫處理的樣本(CBT-CO2)呈現較理想的吸附結果。由本研究的吸附結果發現:此商用多壁奈米碳管經高溫處理或是混酸溶液進行改質將能有效地改善奈米碳管吸附苯蒸氣的吸附量。本研究成功地以經驗模式描述奈米碳管吸附苯蒸氣(16400 ppm, 25 ℃)的動態吸附曲線。由資料統計分析的相關性分析和因子分析討論奈米碳管的表面物化特性、苯蒸氣(16400 ppm, 25 ℃)吸附量和模擬係數間的相關性。
Carbon nanotubes, one of new materials in nanotechnology, with many excellent properties such as high porosity and specific surface area, have been regarded as a promising adsorbent for hydrogen storage. Once the adsorptivity of carbon nanotubes for gases and vapors has been proven, their applications on energy storage, gas sensing and pollution control would be prosperous. The objectives of this research were to understand the influence of heat treatment or chemical modification on material properties of carbon nanotubes and further to evaluate their adsorption capacity for benzene.
One commercial multi-walled carbon nanotubes (MWNTs) was selected and several heat treatments or chemical modifications were applied. The properties of as-received and modified MWNTs were analyzed using several surface techniques. Next, the adsorption capacities of benzene of 16400 ppm at 25 ℃ on carbon nanotubes were determined and the adsorption curves with elapsed time were collected. Moreover, the adsorptions of benzene at several concentrations on selected MWNTs were measured. An empirical model has been attempted to be proposed to describe the adsorption curves. Finally, correlation analysis and factor analysis were used to investigate the relationships among the properties, adsorption capacities and model parameters.
The results show that the MWNTs had curved and tangled morphology by FESEM images, and their tubular structure has been verified from TEM images where some nanotubes have been cut after treatment. The interlayer spacing of all samples was about 3.4 Å, and the distance might be changed after treatment. Some surface functional groups have been found to be occurred at the defects on the surface or at the entrance of the open-ended tube, which might influence the absorption. The Raman spectrum revealed that modification would decrease the degree of graphitic crystallinity. The N2 adsorption-desorption isotherms of MWNTs indicated that they were porous materials, and their pore structure was plate-like or slit-shaped holes. After heat-treated and chemically modified, the increase in the specific surface area and total pore volume were observed. Especially, the chemical modification has significantly improved the porosity; besides generation of new micropores, the mesopore developed from micropores were happened.
The adsorption capacities of benzene (at 16400 ppm, 25 ℃) on MWNTs have been improved after heat treatment or chemical modification with mixed acidic solutions, especially for the samples treated with CO2. It should be noted that the samples treated with HNO3 had the largest surface area but an inferior adsorption capacity. In addition, an empirical model has been successfully proposed to describe the adsorption curves. The results from statistical analyses have suggested the critical properties affecting the adsorption capacity of benzene and the model parameters. To sum up, the results from this study have recommended that MWNTs treated should be a promising adsorbent.
中文摘要……………………………………………………………….………..…...Ⅰ
英文摘要……………………………………………………………..………………Ⅲ
誌謝…………………………………………………………………………………..Ⅴ
目錄…………………………………………………………………………….…….Ⅵ
圖目錄……………………………………………………………………….……….Ⅷ
表目錄……………………………………………………………….……………….Ⅹ
第一章 前言……………………………………………………………...……..…….1
1-1 研究緣起…………………………………………………………….………1
1-2 研究目的…………………………………………....……………….………1
1-3 研究內容…………………………………………………………….………2
第二章 文獻回顧……………………………………..………….………………...…3
2-1 奈米碳管之結構…………………………………………………..……...…3
2-2 奈米碳管之特性………………...............…………………………………..5
2-3 奈米碳管之合成方法………………..…………………...…….......……….6
2-3-1電弧放電法……………………………………………………….......7
2-3-2雷射蒸發法………………………………………………...…………8
2-3-3觸媒熱解法…………….………………………………………..……8
2-4 奈米碳管之純化技術…………………………………………….…….….14
2-5 奈米碳管之改質技術………………………..…………………………….17
2-6 吸附…………………………………………..…….………………………19
2-6-1 吸附原理………………………………...…………..……..………19
2-6-2 氮氣等溫吸附/脫附曲線………………………………......………20
2-6-3 等溫吸附模式……………………………………...………....……23
2-6-4 奈米碳管在吸附領域之應用…………………...…………………26
2-7資料統計分析…………………………………….……...…………………32
2-7-1 相關性分析……………………………………...……………..…..32
2-7-2 因子分析法………………………..……...………………………..33
第三章 研究方法…………………………………………………….………...……34
3-1 研究流程………………………………………………..…...……………..34
3-2 多壁奈米碳管之選擇……………………………………....………..…….35
3-3 奈米碳管之改質方法…………………………….…………..………..…..35
3-3-1 高溫處理………………………………….………….……...……..35
3-3-2 化學改質………………………………….………….…...………..38
3-4表面物化特性分析……………………………………...…….……………41
3-5 吸附實驗…………………………………………………….……………..44
3-5-1 吸附系統之建構………………………………....……...…………44
3-5-2 吸附質之選擇……………………………………..…………...…..45
3-5-3 吸附實驗之執行流程…………………….…………..………...….47
3-6 吸附理論模式之建立…………………………….………….…………….49
第四章 結果與討論………………………………...……………………….………50
4-1奈米碳管的物化特性…………………………………....…………………51
4-2吸附效能分析………………………………………………....….……...…80
4-3奈米碳管物化特性與吸附參數之關係……………………………...….…85
第五章 結論與建議……………………………………………..………....………..90
5-1 結論……………………………………………………………….………..90
5-2 建議…………………………………………………………………..…….91
參考文獻…………………………………………………………….……....……….92
作者簡歷………………………………………………………………..……………98
Ago, H., Ohshima, S., Uchide, K., Komatsu, T. and Yumura, M., “Carbon nanotubes synthesis using colloidal solution of metal nanoparticles,” Physica B, 323:306-307, 2002.
Andrews, R., Jacques, D., Qian, D. and Dickey, E. C., “Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperature,” Carbon, 39:1681-1687, 2001.
Anson, A., Callejas, M. A., Benito, A. M., Maser, W. K., Izquierdo, M. T., Rubio, B., Jagiello, J., Thommes, M., Parra, J. B. and Martinez, M. T., “Hydrogen adsorption studies on single wall carbon nanotubes,” Carbon, 42:1237-1241, 2004.
Botti, S., Ciardi, R., Terranova, M. L., Piccirillo, S., Sessa, V. and Rossi, M., “Carbon nanotubes and nanowires grown from spherical carbon nano-particles,” Chemical Physics Letters, 355:395-399, 2002.
Babaa, M. R., Dupont-Pavlovsky, N., McRae, E. and Masenelli-Varlot, K., ” Physical adsorption of carbon tetrachloride on as-produced and mechanically opened single walled carbon nanotubes,” Carbon, 42:1549-1554, 2004.
Chen, Z., Zhang, L. Tang, Y. and Jia, Z., “Adsorption of nicotine and tar from mainstream smoke of cigarettes by oxidized carbon nanotubes,” Applied Surface Science, 252:2933-2937, 2006.
Chiang, H. L. , Tsai, J. H. , Chang, G. M. and Hsu, Y. C., “Comparison of a single grain activated carbon and column adsorption system,” Carbon, 40:2921-2930, 2002.
Chen, C.M., Chen, M., Leu, F.C., Hsu, S.Y., Wang, S.C., Shi, S.C., Chen, C.F., “Purification of multi-walled carbon nanotubes by microwave digestion method,” Diamond and Related Materials, 13:1182-1186, 2004.
Crank, J., “The Mathematics of Diffusion ,”2nd ed.:Brunel university uxbridge, 1973.
Du, C. and Pan, N., “CVD growth carbon nanotubes directly on nickel substrare,” Materials Letters, 59:1678-1682, 2005.
Eswaramoorthy, M., Sen, R. and Rao, C. N. R., “A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors,” Chemical Physics Letters, 304:207-210, 1999.
Feng, Y., Zhou, G., Wang, G., Qu, M. and Yu, Z., “Removal of some impurities from carbon nanotubes,” Chemical Physics Letters,375:645-648, 2003.
Furuya, Y., Hashishin, T., Iwanaga, H., Motojima, S. and Hishikawa, Y., “Interaction of hydrogen with carbon coils at low temperature,” Carbon, 42:331-335, 2004.
Gajewski, S., Maneck, H. E., Knoll, U., Neubert, D., Dörfel, I., Strauß, B. and Friedrich, J. F., “Purification of single walled carbon nanotubes by thermal gas phase oxidation,” Diamond and Related Materials, 12:816-820, 2003.
Gregg, S. J. and Sing, K. S. W., Adsorption, Surface Area and Porosity, Second edition, Academic Press, London, 1982.
Huang, W., Wang, Y., luo, G. and Wei, F., “99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing,” Carbon, 41:2585-2590, 2003.
Harris, J. D., Raffawlle, R. P., Gennett, T., Landi, B. J. and Hepp, A. F., “Growth of multi-walled carbon nanotubes by injection CVD using cyclopentadienyliron dicarbonyl dimer and cyclooctatetraene iron tricarbonyl,” Materials Science and Engineering B, 116:369-374, 2005.
Huang, W. Z., Zhang, X. B., Tu, J. P., Kong, F. Z., Ma, J. X., Liu, F., Lu, H. M. and Chen, C. P., “The effect of pretreatments on hydrogen adsorption of multi-walled carbon nanotubes,” Materials Chemistry and Physics, 78:144-148, 2002.
Inoue, S., Ichikuni, N., Suzuki, T., Uematsu, T. and Kaneko, K., “Capillary Condensation of N2 on Multi-wall Carbon Nanotubes,” Physical Chemistry B, 102:4689-4692, 1998.
Jia, Z., Wang, Z., Liang, J., Wei, B. and Wu, D., “Production of short multi-walled carbon nanotubes,” Carbon, 37:903-906, 1999.
Jin, Z., Xu, G. Q. and Goh, S. H., “A preferentially ordered accumulation of bromine on multi-wall carbon nanotubes carbon nanotube,” Carbon, 38:1135-1139, 2000.
Jiang, Q., Qu, M. Z., Zhou, G. M., Zhang, B. L. and Yu, Z. L., “A study of activated carbon nanotube as electrochemical super capacitors electrode materials,” Materials Letters, 57:988-991, 2002.
Jung, K. H., Boo, J. H. and Hong, B., “Synthesis of carbon nanotubes grown by hot filament plasma-enhanced chemical vapor deposition method,” Diamond and Related Materials, 13:299-304, 2004.
Kumar, M., and Ando, Y., “Camphor-a botanical precursor producing garden of carbon nanotubes,” Diamond and Related Materials, 12:998-1002, 2003.
Kumar, M., and Ando, Y., “Single-wall and multi-wall carbon nanotubes from camphor-a botanical hydrocarbon,” Diamond and Related Materials, 12:1845-1850, 2003.
Kim, Y. A., Hayashi, T., Osawa, K., Dresselhaus, M. S. and Endo, M., “Annealing effect on disordered multi-wall carbon nanotubes,” Chemical Physics Letters, 380:319-324, 2003.
Kuznetsova, A., Mawhinney, D. B., Naumenko, V., Yates Jr., J. T., Liu, J. and Smalley, R. E., “Enhancement of adsorption inside of single-walled carbon nanotubes: opening the entry ports,” Chemical Physics Letters, 321:292-296, 2000.
Liu, H., Cheng, G., Zheng, R., Zhao, Y., and Liang, C., “Influence of acid treatments of carbon nanotube precursors on Ni/CNT in the synthesis of carbon nanotubes,” Journal of Molecular Catalysis A:Chemical, 230:17-22, 2005.
Liu, B. C., Jung, S. C., Kang, H. K., Yang, C. W., Park, J. W., Park, C. Y. and Lee, C. J., “Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst,” Chemical Physics Letter, 383:104-108, 2004.
Liu, F., Zhang, X., Cheng, J., Tu, J., Kong, F., Huang, W. and Chen, C., “Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior, ” Carbon, 41:2527-2532, 2003.
Liu, J., Shao, M., Xie, Q., Kong, L., Yu, W. and Qian, Y., “Single-source precursor route to carbon nanotubes at mild temperature,” Carbon, 41:2101-2104, 2003.
Lee, C. J. and Park, J., “Growth and structure of carbon nanotubes produced by thermal chemical vapor deposition,” Carbon, 39:1891-1896, 2001.
Li, F., Cheng, H. M., Xing, Y. T., Tan, P. H. and Su, G., “Purification of single-walled carbon nanotubes synthesized by the catalytic decomposition of hydrocarbons,” Carbon, 38:2041-2045, 2000.
Li, L., Li, F., Liu, C. and Cheng, H. M., “Synthesis and characterization of double-walled carbon nanotubes from multi-walled carbon nanotubes by hydrogen-arc discharge,” Carbon, 43:623-629, 2005.
Li, Y. L., Kinloch, I. A., Shaffer, M. S. P., Geng, J., Johnson, B. and Windle, A. H., “Synthesis fo single-walled carbon nanotubes by a fluidized-bed method,” Chemical Physics Letters, 384:98-102, 2004.
Lai, H. J., Lin, M. C. C, Yang, M. H. and Li, A. K., “Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge,” Materials Science and Engineering C, 16:23-26, 2001.
Lefrant, S., “Raman and SERS studies of carbon nanotube systems,” Current Applied Physics, 2:479-482, 2002.
Li, J. and Zhang, Y., “A simple purification for single-walled carbon nanotubes,” Physica E, 28:309-312, 2005.
Li, X., Zhu, H., Ci, L., Xu, C., Mao, Z., Wei, B., Liang, J. and Wu, D., “Hydrogen uptake by graphitized multi-walled carbon nanotubes under moderate pressure and at room temperature,” Carbon, 39:2077-2088.
Liu, R. M. and Ting, J. M., “Growth of carbon nanotubes using microwave plasma-enhanced chemical vapor deposition process,” Materials Chemistry and Physics, 82:571-574, 2003.
Lu, C., Chung, Y. L. and Chang, K. F., “Adsorption of trihalomethanes from water with carbon nanotubes,” Water Research, 39:1183-1189, 2005.
McClellan, A. L. and Harnsberger, H. F., “Cross-sectional Areas of Molecules Adsorbed on Solid Surfaces,”Journal of Colloid and Interface Science, 23:577-599, 1967.
Maurin, G., Stepanek, I., Bernier, P., Colomer, J.-F., Nagy, J. B. and Henn, F., “Segmented and opened multi-walled carbon nanotubes,” Carbon, 39:1273-1278, 2001.
Murakami, Y., Miyauchi, Y., Chiashi, S. and Maruyama, S., “Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates,” Chemical Physics Letters, 377:49~54, 2003.
Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S. and Kohno, M., “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chemical Physics Letters, 360:229-234, 2002.
Matsumoto, S., Pan, L., Tokumoto, H. and Nakayama, Y., “Selective growth of single-walled carbon nanotubes by chemical vapor deposition,” Physica B, 323:275-276, 2002.
Montoro, L. A., Lofrano, R. C.Z. and Rosolen, J. M., “Synthesis of single-walled and multi-walled carbon nanotubes by arc-water method,” Carbon, 43:195-213, 2005.
Okpalugo, T. I. T., Papakonstantinou, P., Murphy, H., McLaughlin, J. and Brown, N. M. D., “High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs,” Carbon, 43:153-161, 2005.
Peng, L. M., Shi Z. J., Zhang, Z. L., Ouyang, L., Gu, Z.N., Xue, Z. Q. and Wu, Q. D., “Growth of compound single- and multi-walled carbon nanotubes," Ultramicroscop, 98:195-200, 2004.
Park, D., Kim, Y. H. and Lee, J. K., “Synthesis of carbon nanotubes on metallic substrates by a sequential combination of PECVD and thermal CVD,” Carbon, 41:1025-1029, 2003.
Qiu, J., Li, Y., Wang, Y. and Li, W., “Production of carbon nanotubes from coal,” Fuel Processing Technology, 85:1663-1670, 2004.
Rajalakshmi, N., Dhathathreyan, K. S., Govindaraj, A. and Satishkumar, B. C., “Electrochemical investigation fo single-walled carbon nanotubes for hydrogen storage,” Electrochemica Acta, 45:4511-4515, 2000.
Skoog, D. A., Holler, F. J. and Nieman, T. A., “Principles of Instrumental Analysis,” 1997.
Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R., Kulik, A. J. and Stöckli, T. et al., “Elastic and shear moduli of single-walled carbon nanotube ropes,”Physical Review Letters, 82(5):944-947.
Takagi, D., Homma, Y. and Kobayashi, Y., “Selective growth of individual single-walled carbon nanotubes suspended between pillar structures,” Physica E, 24:1-5, 2004.
Thostenson, E. T., Ren, Z. and Chou, T. W., “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology, 61:1899-1912.
Treacy, M. M. J., Ebbesen, T. W., Gibson, T. M., “Exceptionally High young’s modulus observed for individual carbon nanotubes,”Nature, 381:680-687, 1996.
Valiente, A. M., Lopez, P. N., Ramos, I. R., Ruiz, A. G., Li, C. and Xin, Q., “In situ study of carbon nanotube formation by C2H2 decomposition on an iron-based catalyst,” Carbon, 38:2003-2006, 2000.
Wong, T. S., Wang, C. T., Chen, K. H., Chen, L. C. and Ma, K. J., “Carbon nanotube growth by rapid thermal processing,” Diamond and Related Materials, 10:1810-1813, 2001.
Wong, E. W., Sheehan, P. E. and Lieber, C. M., “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,”Science, 277:1971-1975, 1997.
Walters, D. A., Ericson, L. M., Casavant, M. J., Liu, J., Colbert, D. T. and Smith, K. A. et al., “Eleastic strain of freely suspened single-walled carbon nanotube ropes,”Applied Physics Letters, 74(25):3803-3805, 1999.
Xie, J. and Varadan, V. K., “Synthesis and characterization of high surface area tin oxide/functionalized carbon nanotubes composite as anode materials,” Materials Chemistry and Physics, 91:274-280, 2005.
Xie, S., Li, W., Pan, Z., Chang, B. and Sun, L., “Mechanical and physical properties on carbon nanotube,”Journal of Physics and Chemistry of Solids, 61(7):1153-1158, 2000.
Yen, J. H., Leu, I. C., Lin, C. C. and Hon, M. H., “Effect of catalyst pretreatment on growth of carbon nanotubes,” Diamond and Related Materials, 13:1237-1241, 2004.
Yu, M. F., Files,B. S., Arepalli, S. and Ruoff, R. S., “Tensil loading of ropes of single-walled carbon nanotubes and their mechanical properties,”Physical Review Letter, 84(24):5552-5555, 2000.
Yu, M. F., Lourie, O., Dyer, M., Moloni, K. and Kelly, T., “Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load,”Science, 287:637-640, 2000.
Zhang, Y., Shi, Z., Gu, Z. and Iijima, S., “Structure modification of single-wall carbon nanotubes,” Carbon, 38:2055-2059, 2000.
Zhang, F., Shen, J., Sun, J., Zhu, Y. Q., Wang, G. and McCartney, G., “Conversion of carbon nanotubes to diamond by spark plasma sintering,” Carbon, 43:1254-1258, 2005.
Zhong, R., Cong, H. and Liu, C., “Fabrication of single-walled carbon nanotubes from multi-walled carbon nanotubes and carbon fibers,” Carbon, 40:2970-2973, 2002.
Zhang, W. D., Thong, J. T. L., Tjiu, W. C. and Gan, L. M., “Fabrication of vertically aligned carbon nanotubes patterns by chemical vapor deposition for field emitters,” Diamond and Related Materials, 11:1638-1642, 2002.
Zhou, L., Zhou, Y. and Sun, Y., “A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes,” International Journal of Hydrogen Energy, 29:475-479, 2004.
Zhou, L., Sun, Y., Yang, Z. and Zhou, Y., “Hydrogen and methane sorption in dry and water-loaded multiwall carbon nanotubes,” Journal of Colloid and Interface Science, 289:347-351, 2005.
財團法人工業技術研究院,http://www.itri.org.tw/chi/index.jsp ,2004
連興隆,“環境奈米技術在地下環境應用之回顧與展望”,環境工程會刊,2004年
陳威錦,“熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究”, 國立中山大學環境工程研究所碩士論文,2004年
曹功勳,“改質黏土吸附酚類化合物之平衡與動力學”,元智大學化學工程研究所碩士論文,2002年
游純青, “介孔矽質MCM-48之光學研究”,中原大學應用物理研究所碩士論文,2003年
蔡木川,“石化污泥吸附劑對苯之吸附、脫附影響研究”,國立成功大學環境工程研究所碩士論文,2001年
王應瓊、丁陳漢蓀, “儀器分析”,1989年
成會明, “奈米碳管”,2004年
張立德、牟季美, “奈米材料和奈米結構”,2002年
張立德、解思深, “奈米材料和奈米結構”,2005年
馮榮豐、陳錫添, “奈米工程概論”,2004年
孫逸民、陳玉舜、趙敏勳、謝明學、劉興鑑, “儀器分析”,2000年
劉吉平、郝向陽, “奈米科技與技術”,2003年
羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民, “奈米科技導論”,2003年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔