跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 10:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮騰榔
研究生(外文):Teng-Lang Feng
論文名稱:對焦輪廓重建技術
論文名稱(外文):Shape Reconstruction from Focus
指導教授:陳傳生
學位類別:博士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:150
中文關鍵詞:Adaptive sharpnessAutomatic focusDiscrete wavelet transformation
外文關鍵詞:Adaptive sharpnessAutomatic focusDiscrete wavelet transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1080
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
被動式自動對焦技術(Passive autofocus),不需額外測距裝置,將拍攝數位化影像,經由清晰度函數(Sharpness function)運算,計算出所謂清晰度尺度(Sharpness measure)。改變鏡頭與被攝物體間相對距離,判斷最大清晰度所在鏡頭位置,獲得清晰的影像。常見於數位相機的主動式自動對焦技術,必需藉助測距裝置,測量物件相對於鏡頭的位置,據以調整 CCD鏡距以達成對焦目的。被動式自動對焦技術不需要測距裝置,利用鏡頭擷取的數位化影像,計算所謂的清晰度尺度(sharpness measure)後,改變鏡頭焦距或是物距,尋找清晰度尺度達到最大值的成像位置以呈現最清晰的畫面。
回顧文獻中提出多種清晰度函數,利用差分的方法對數位化影像進行計算,對於反光度高物體(如:鋼球)和低照度環境下, Sobel和 amplitude無法作為清晰度判斷指標(Index);利用DCT計算影像清晰度,只在分析平面物件(如:報紙)時效果較佳。FFT透過對數位化影像進行,分解和合成的濾波處理。驗證平面物件、單個立體物件、易受反光物件和低照度環境下,成功得到清晰度判斷指標。DWT必須考慮2項因素:Base Function和分解次數的選擇,將一張數位化影像分解成4個部分。分別包含影像中:低解析度部分,水平、垂直和對角線方向的係數,產生變化量大的部分。經由實驗驗證,影像中垂直方向發生變化,所產生係數具有較高的空間解析度,對於清晰度的敏銳度較高。所以本文取出垂直方向,係數變化部分的資料。此資料為二維矩陣,加總所有係數值,計算出清晰度值,作為清晰度判斷的指標。由此成計算清晰度尺度結果不正確,將搜,推廣到多段差物件分析,亦得到良好效果,證實DWT適用性廣亦具實用性。
對焦搜尋法的開發,文獻中提出Binary Search Method和Fibonacci Search Method。缺點在焦距(Focal length)附近搜索頻繁,造成鏡頭移動量過大,若拍攝數位化影像內含有雜訊成分,造尋到局部最大值(Local maximum)而非總體最大值(Global maximum)。本文為了提高對焦速度及準確性,提出 YZU焦搜尋法,利用測量值進行邏輯判斷。易於將雜訊點刪除。搜索過程中分為粗搜索和細搜索兩階段,搜索到焦距附近時,假設曲線呈二次多項式分佈,預估最大清晰度尺度,減少鏡頭移動次數並快速找到對焦點(Focus),完成自動對焦工作。
重建物體的三維形貌(3D shape recovery)。拍攝一連串不同物距的數位化影像,將每張影像分割成數個 視窗(window),計算一連串影像的清晰度值。假設焦距附近的數值分佈,為高斯函數(Gauss function)分佈型態,轉換清晰度最大值,為重建物體外貌的高度值。本文設定2個門檻值(Threshold) 和 ,作為正確高度選取的標準。若清晰度對物距分佈寬度小於 和清晰度最大值大於 ,即符合高斯函數分佈。藉助此法篩選清晰影像,得到正確高度值;而非受雜訊干擾得到假高度。下一步,取出每個 矩陣,採用2階Lagrange Polynomial Equation來近似物體輪廓,利用已知點高度值估計未知部位的高度值,還原原始影像中物體的三維形貌。我們找出一連串影像中,各部位最清晰影像,合成一張全面對焦的清晰物體影像,實踐完全聚焦三維成像技術(All-Focused Image Generation)。
研究自動對焦領域中,本文完成一套被動式自動對焦系統,並成功以DWT作為清晰度判斷指標。進而利用幾十張數位化影像,重建物體的三維形貌,並合成一張全面對焦的清晰物體影像。
Recovering the shape information from a set of images sensed by a camera is an important problem in computer vision. Autofocusing algorithms mainly depend on pixel-based analysis in digital camera. A passive automatic focusing system with a charge-coupled device (CCD) camera is installed to compare the sharpness function of the best focus with different measures algorithms in this thesis. In addition, several other factors, like low illumination environment, reflective object, and overlap objects are also considered.
According to the results obtained, when distance overlaid under low illumination environment, in order to obtain the best sharpness function of the image through the a autofocus CCD camera from diffuse and specula surface object, the four different bases transform of wavelet, such as Harr, Daubechies, Coiflets and Biorthogonal, are presented in this study. Meanwhile, to produce an adaptive sharpness function of an image and show its sharpness, especially in the vicinity of focus, the Sobel edge-enhanced operator, gray-level amplitude operator (amplitude), sum-modulus-difference operator, discrete cosine transformation and discrete wavelet transform vertical (DWT) were compared further. In this thesis presents a new Yuan-Ze University (YZU) algorithm to detect the position of the sharpest image from a rough surface of an industry component quickly and accurately. To prove the performance of the YZU algorithm, it is compared to some well-known methods like fast Fourier transform (FFT), Amplitude, Laplacian, discreet cosine transform (DCT), and conventional edge operators. Moreover, a new dynamic search method that implements this algorithm to produce real time digital image systems with fast response, accuracy, and robustness is proposed.
The experiment results show that this technique is applicable to practical 3D measurement. In the application, two specimens a gauge block and an integrated circuit (IC) lead frame are tested to demonstrate the validity of 3D Shape recovery are presented.
Contents



Abstract I
Acknowledgements III
Contents IV
List of Figures VI
List of Tables XI
Nomenclature XII


Chapter 1 Introduction ……1

1.1 Motivation 1

1.2 Objective 4

1.3 Overview 6

1.4 Literature Review 6

Chapter 2 Background in Related Work 11

2.1 The Pinhole Camera 11
2.1.1 Geometry of an Optical System 12
2.1.2 Lateral and Axial Magnification 13
2.1.3 Depth of Focus and Depth of Field 14
2.2 Lenses 17
2.2.1 The Camera Model System 18
2.2.2 Point Spread Function 19
2.2.3 Discrete Convolution 20
2.2.4 Computation of Convolution 21
2.3 Derivative Filter 24
2.3.1 Noise Removal Using Spatial Filters 25
2.3.2 Adaptive Filters-Minimum Mean-Square Error Filter 27
2.4 Optical transfer functions 30

2.5 Depth Computations 31

2.6 Experiment 33

Chapter 3 Focus measures, search algorithms and 3D Reconstruction 53

3.1 Focus Model 53

3.2 Depth from Focus 54
3.2.1 Further Readings 57
3.3 Focus Measure 57
3.3.1 Fourier Transform 57
3.3.2 Discrete Cosine Transform(DCT) 60
3.3.3 Gray-Level Amplitude Focusing Measure 64
3.3.4 Sobel Edge Detection Focusing Measure 64
3.3.5 Sum-Modulus-Difference Focusing Measure 66
3.3.6 Wavelet Transform 68
3.3.7 Wavelet Transform of the Digital Image 70
3.3.8 Prewitt Focusing Measure 75
3.3.9 YZU Focus Measure 76
3.3.10 Experimental Result and Discussion 77
3.4 Searching Focus 79
3.4.1 Global Search Method 79
3.4.2 Fibonacci Search Method 79
3.4.3 Binary Search Method 88
3.4.4 Searching by Percentage Drop 88
3.4.5 Searching by Center of Area 89
3.4.6 Dynamic Search method 89
3.4.7 Experimental Result and discussion 91
3.5 3D Reconstruction of Range Image 92
3.5.1 Experimental Results and Discussion 94
Chapter 4 Automaitc Camera System 113

4.1 Hardware 113

4.2 Application 116

4.3 Building an all-in-focus Image 121

Chapter 5 Conclusions and Future works 137

5.1 Conclusions 137

5.2 Future works 140

Bibliography 144
Bibliography
1.J. M. Kuo, and K. S. Chen, The Application of Wavelets Correlator for Ship Wake Detection in SAR Images, IEEE Trans. on Geoscience and Remote Sensing, Vol. 41, No. 6, 2003, pp. 1506-1511.
2.M. Penedo, W. A. Pearlman, P. G. Tahoces, M. Souto, and J. J. Vidal, Region-Based Wavelet Coding Method for Digital Mammography, IEEE Trans. on Medical Imaging, Vol. 22, No. 10, 2003, pp. 1288-1296.
3.J. F. Schlag, A. C. Sanderson, C. P. Neumann, and F. C. Wimberly,, Implementation of Automatic Focusing Algorithms for A Computer Vision System with Camera Control, Proceedings of CMU Robotics Institute, Aug. 1983.
4.K. Wolfgang and J. Fischer, Analytical Model of Autofocus System with CCD Camera, Proceedings of the International Society of Optical Engineering Conference on Sensors, Camera Systems for Scientific, Industrial and Digital Photography Applications, Vol.3965, May 2000, pp. 396-380.
5.O. Kazushige, K. Izumi, M. Nozaki. and I. Takeda, An Advanced Autofocus System for Video Camera Using Quasi Condition Reasoning, IEEE Transactions on Consumer Electronics, Vol. 36, No. 3, Aug. 1990, pp. 526-530.
6.J. Fdez-valdivia, J.A. Garcia, J. Martinez-Baena, and R. Fdez-Vidal, The Selection of Natural Scales in 2D Images Using Adaptive Gabor Filtering, IEEE Trans Pattern Anal. Machine Intell., Vol. 20, May 1998, pp. 458-469.
7.T.N. Pappas, and D.L.Neuhoff, Least-Squares Model-Based Halftoning, IEEE Trans Image Processing, Vol. 8, No.8, August 1999, pp. 1102-1116.
8.R.D. Edward, and A.L. Phillip, Introduction to Real-time Imaging, IEEE Press, 1995, pp. 72-80,
9.J. Baina, and J. Dublet, Automatic Focus and Iris Control for Video Cameras, Proceedings of the Fifth International Conference on Image Processing and Its Application, Edinburgh, UK, 1995, pp. 232-235.
10.M. Kunt, A. Ikonomopoulos, and M. Kocher Second Generation Image Coding Techniques, Proc. IEEE, Vol. 73, Apr. 1985, pp. 549-575.51
11.G. Minami, Z. Xiong, A. Wang and S. Mehrotra, 3-D Wavelet Coding of Video with Arbitrary Regions of Support, IEEE Trans. Circuits Syst. Video Technol., Vol. 11, Sept. 2001, pp. 1063-1068.
12.H.J. Barnard, Image and Video Coding Using a Wavelet Decomposition, PhD. dissertation, Dept. Electrical Engineering, Delf Univ. Technol., Delf, the Netherlands, 1994.
13.S. Li, and W. Li, Shape-adaptive Discrete Wavelet Transform for Arbitrarily Shaped Visual Object Coding, IEEE Trans. Circuits Syst. Video Technol., Vol. 10, Aug. 2000, pp. 725-743.
14.W. Joewono and J. Suganda, Wavelet Transform-based Autofocus Camera System, Proceedings of the 1998 IEEE Asia-Pacific Conference on Circuits and Systems, Chiangmai, Thailand, Nov. 1998, pp. 49-51.
15.R.Yu, A.R. Allen, and J. Watson, Focus Measure for Speckle Noisy .R.Images Based on Wavelet Multiresolution Analysis, Proceedings of SPIE International Conference on Wavelet Applications in Signal and Image Processing V, Aberdeen, UK, Vol. 3169, Aug. 1997.
16.N. K Chern, P. A. Neow, and Jr, M. H Ang, Practical Issues in Pixel-based Autofocusing for Machine Vision, Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul, South Korea, Vol. 3, May 2001, pp. 2791-2796.
17.B.G. Batchelor and P.F. Whelan, Intelligent Vision Systems for Industry, Springer-Verlag, 1997, p.360.
18.L. F. Holeva, Applications of AI, Machine Vision and Robotics, Chapman & Hall, London, 1997, p.1273.
19.K. G. Harding, Phase Grating Use for Slop Discrimination in Moire Contour-ing, in Proc. SPIE, vol. 1614 of Optics, illumination, and image sensing formachine vision VI, pp. 265-270 (1991).
20.Z. J. Geng, Rainbow 3-D Camera: New Concept of High-Speed Three Vision System, Opt. Eng. 35, 376-383 (1996).
21.C. Wust and D. W. Capson, Surface Profile Measurement using Color Fringe Projection, Machine Vision and Applications 4, 193-203 (1991).
22.P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, Color-Encoded Digital Fringe Projection Technique for High-Speed Three-Dimensional Surface Contouring, Opt. Eng. 38, 1065-1071 (1999).
23.L. Zhang, B. Curless, and S. M. Seitz, Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming, in The 1st IEEE International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 24-36 (2002).
24.M. Takeda and K. Mutoh, Fourier Transform Profilometry for the Automatic Measurement of 3-D Object Shape, Appl. Opt. 22(24), pp.3977-3982 (1983).
25.S. Rusinkiewicz, O. Hall-Holt, and L. Marc, Real-Time 3D Model Acquisition, in SIGGRAPH, vol. 1281 of 3D acquisition and image based rendering, pp. 438-446 (ACM Press, 2002).
26.O. Hall-Holt and S. Rusinkiewicz, Stripe Boundary Codes for Real-Time Structured-Light Range Scanning of Moving Objects, in The 8th IEEE International Conference on Computer Vision, pp. II: 359-366 (2001).
27.P. S. Huang, C. Zhang, and F. P. Chiang, High-Speed 3-D Shape Measurement Based on Digital Fringe Projection, Opt. Eng. 42(1), 163-168 (2003).
28.B. Jahne. Handbook of Digital Image Processing for Scienti.c Applications.CRC Press, Boca Raton, FL, 1997.
29.A. Richards. Alien Vision: Exploring the Electromagnetic Spectrum with Imaging Technology. SPIE, Bellingham, WA, 2001.
30.A. Watt. Fundamentals of Three-dimensional Computer Graphics. Addison-Wesley, Workingham, England, 1989.
31.J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics,Principles and Practice. Addison Wesley, Reading, MA, 1990.
32.K. Iizuka. Engineering Optics, vol. 35 of Springer Series in Optical Sciences.Springer, Berlin, 2nd edn., 1987.
33.W. J. Smith. Modern Optical Design. McGraw-Hill, New York, 3rd edn.,2000.
34.M. J. Riedl. Optical Design Fundamentals for Infrared Systems. SPIE,Bellingham, 2nd edn., 2001.
35.C. M. Close and D. K. Frederick. Modelling and Analysis of Dynamic Systems.Houghton Mi.in, Boston, 1978.
36.R.C. Dorf and R.H. Bishop. Modern Control Systems. Addison-Wesley,Menlo Park, CA, 8th edn., 1998.
37.D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1982.
38.B. K. P. Horn, Robot Vision, McGraw-Hill Company, 1986.
39.A. Rosenfeld, and A. C. Kak, Digital Picture Processoing, Vol. 1. Academic Press, 1982.
40.B. K. Horn. Robot Vision. MIT Press, Cambridge, MA, 1986.
41.B. Jahne. Handbook of Digital Image Processing for Scientific Applications. CRC Press, Boca Raton, FL, 1997.
42.B. Jahne, H. Hausecker, and P. Geisler, eds. Handbook of Computer Vision and Applications. Volume I: Sensors and Imaging. Volume II: Signal Processing and Pattern Recognition. Volume III: Systems and Applications Academic Press, San Diego, 1999. Includes three CD-ROMs.
43.M. Gökstorp. Depth Computation in Robot Vision PhD thesis, Linköping University, Sweden, S-581 33 Linköping, Sweden, 1995. Dissertation No 378, ISBN 91-7871-522-9.
44.P. Alex and A Pentland. New Sense for Depth of Field. IEEE trans. on PatternAnalysis and Machine Intelligence, vol. 9, pages 523-531, July 1987.
45.J. Ens and P. Lawrence.An Investigation of Methods for Determining Depth Focus.IEEE trans. on Pattern Analysis and Machine Intelligence,vol. 15, pages 97-107, February 1993.
46.A. Horii. The Focusing Mechanism in the KTH Head Eye System Technical Report, Compuational Vision and Active Perception Laboratory,Royal Institute of Technology, S-100 44 Stockholm, Sweden.
47.A. Horii. Depth from Defocusing Technical Report, Compuational Vision and Active Perception Laboratory, Royal Institute of Technology, S-100 44 Stockholm, Sweden Linköping University, Sweden, S-581 33 Linköping, Sweden, 1995. Dissertation No 378, ISBN 91-7871-522-9.
48.H. K. Nishihara. Practical real-time stereo matcher. Optical Eng., 23:536–545, 1984.
49.G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision. Kluwer, 1995.
50.R. Blahut. Fast Algorithms for Digital Signal Processing. Addison Wesley Reading, MA, 1985.
51.H. Burkhardt, ed. Workshop on Texture Analysis, 1998. Albert-Ludwigs-Universitat, Freiburg, Institut fur Informatik. Three-Dimensional Data from Images. Springer, New York, 1998.
52.M. Subbarao, and J. K. Tyan, Root-Mean Square Error in Passive Autofocusing and 3D Shape Recovery, Proc. SPICE Conf. Vol. 2,909, Three-Dimensional Imaging and laser-Based Systems for Metrology and Inspection Ⅱ, pp. 162 –177,Boston, Nov. 1996.
53.E. Krotkov, Focusing, Int’l Computer Vision, Vol. 1, pp. 223-237, 1987.
54.Krokov, Eric Paul. Active Computer Vision by Cooperative Focus and Stereo. New York: Springer-Verlag. 1989.
55.57Geibler and T. Dierig. Handbook of Computer Vision and Applications, Volume 2, Signal Processing and Pattern Recognition, Kapitel: Depth from Focus. Academic Press, 1999.
56.I. R. Noubakhsh, D. Andre, C. Tomasi, and M. R. Genesereth. Mobile robot obstacle avoidance via depth from focus. Robotic and Automous Systems, 22: 151-158,1997
57.Y. Xiong and S. A. Schafer. Depth from focusing and defocusing. IEEE Computer Vision and Pattern Recognition (CVPR), pp. 68-73, 1993.
58.M. Subbarao and T. Choi. Accurate recovery of three dimensional shape from image focus. IEEE Transactions on Pattern Analysis and Machine Intellgence, 17(3):266-27453
59.M. Subbarao and Y. F. Liu. Accurate reconstruction of three dimensional shape and focused images. Technical report, Department of Electrial Engineering, State University of New York at Stony Brook, 1995.
60.M. Subbarao, T. Choi, and A. Nikzad, Focusing Techniques, J. Optical Eng., Vol. 32, No. 11, pp. 2824-2836, Nov. 1993.
61.S. K. Nayar. Shape From Focus System, Proc. IEEE CS Conf. On Computer Vision and Pattern Recognition, pp. 302-308, Champaign, Illinois, June 1992.52
62.M. Watanabe and S. K. Nayer, Minimal Operator Set for Passive Depth from Defocus, CVPR96, pp.431-438, 1996.
63.S. K. Nayar, and Y. Nakagawa, Shape from Focus, IEEE Trans. On PAMI, Vol. 16, No. 8, pp. 824-831, 1994.
64.H. L. F. V. Helmholtz. Helmholtz’s treatise on physiological optics. Optical Society of America, 1924.
65.N. G. Subbarao. Depth recovery from blurred edges. IEEE International Conference for Computer Vision and Pattern Recognition, pp. 498-503,1988.
66.S. Chang, S. H. Lai and C. W. Fu. A generalized depth estimation algorithm with a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(4): 405-411, 1992.
67.S. K. Nayar and Y. Nakgawa. Shape from Focus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(8): 824-831, 1994.
68.S. K. Nayar, M. Noguchi, M. Watanabe, and Y. Nakagawa. Real-time focus range sensors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(12): 1186-1198, 1996.
69.M. Subbarao and Y.F. Liu. Accurate reconstruction of three-dimensional shape and focused image from a sequence of noisy defocused images. Technical report, Department of Electrical Engineering, State University of New York at Stony Brook, 1995.
70.M. Subbarao and J. K. Tyan. Selecting the optimal focus measure for autofocusing and depth-from focus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8): 864-870, 1998.
71.B. Jahne, H. Hausecker, and P. Geisler, Handbook of Computer Vision and Applications. Volume I: Sensors and Imaging. Volume II: Signal Processing and Pattern Recognition. Volume III: Systems and Applications. Academic Press, San Diego, 1999. Includes three CD-ROMs.
72.R. Klette, A. Koschan, and K. Schluns. Computer Vision. Three-Dimensional Data from Images. Springer, New York, 1998.
73.R. Bracewell. The Fourier Transform and its Applications. McGraw-Hill,New York, 2nd edn., 1986.
74.A. D. Poularikas, ed. The Transforms and Applications Handbook. CRC,Boca Raton, 1996.
75.J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier series. Math. of Comput., 19:297–301, 1965.
76.R. Blahut. Fast Algorithms for Digital Signal Processing. Addison-Wesley, Reading, MA, 1985.
77.Jarvis, R. A., Focus Optimization Criteria for Computer Image Processing, Microscope Vol. 24, 1976, pp. 163-180.
78.D. Gabor, ``Theory of communication'', Journal of I.E.E. 93 pp 429-441, 1946.
79.Y. Meyer, Wavelets, Ed. J.M. Combes et al., Springer Verlag, Berlin, p. 21, 1989.
80.Li, S., Kwok, J. T., Zhu, H. and Wang, Y., Texture Classification Using the Support Vector Machines, Pattern Recognition, Vol. 36, December 2003, pp. 2883-3893.
81.Al-Shrouf, A., Abo-Zahhad, M., and Ahmed, Sabah M., A Novel Compression Algorithm for Electrocardiogram Signals Based on the Linear Prediction of the Wavelet Coefficients, Digital Signal Processing, Vol. 13, 2003, pp. 604-622.
82.J. F. Canny. A computational approach to edge detection. PAMI, 8:679–698, 1986.
83.D. Marr and E. Hildreth. Theory of edge detection. Proc. Royal Society,London, Ser. B, 270:187–217, 1980.
84.J. J. Koenderink and A. J. van Doorn. Generic neighborhood operators. IEEE Trans. PAMI, 14(6):597–605, 1992.
85.P.E. Danielsson, Q. Lin, and Q.Z. Ye, Detection of second degree variations in 2Dand 3Dimages. Technical Report LiTH-ISYR-2155, Department of Electrical Engineering, Linkoping University, S-58183 Linkoping, Sweden, 1999.
86.N. Kuang , N. Chern , A. N. Poo, and M.H. Jr. Ang, Practical Issues in Pixel-Based Autofocusing for Machine Vision, Proceedings of the IEEE International Conference on Robotics and Automation, Vol.3, pp.2791-2796, 2001.
87.G.S. Beveridge, and R. S. Schechter, Optimization: Theory and Pratice, McGraw-Hill, New York. 1070.
88.D. J. Wilde, , Optimum Seeking Methods, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1964).
89.D. J. Wilde, and C. S. Beightler, Foundations of Optimization, Prentice-Hall Inc., Englewood Cliffs, N. J. (1967
90.E,R Davies, Machine Vision: Theory, Algorithms, Practicalities. Academic Press Limited. 1990.
91.W. H. Press, S.A.Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press. 2nd Edition. 1992. pp. 504-508.
92.D.J. Whitehouse (1997) Surface metrology, Meas. Sci. Technol. 8, 995-972
93.P. Groot and L. Deck (1995) Surface profiling by analysis of white-light interferograms in the spatial frequency domain , Journal of Modern Optics ,42(2):389-4054
94.M. Takeda and H .Yamamoto (1994) Fourier-transform speckle profilmetry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially surfaces, Appl. Opt .33, 7829-7837
95.J.M. Tenenbaum (1970) Accommodation in Computer Vision, Ph.D. Thesis, Stanford University
96.S.M. Ryoo, T.S. Choi (2000) 3-D profilometry by analysis of noisy white-light inferograms. Proceeding of SPIE Vol. 3919, pp 152-159
97.K.L. Chung, W.C Chen. and F.C, Lin, On the complexity of Search Algorith,s, IEEE Transaction on Computers,Vol. 41, No. 9, Sept. 1992, pp. 1172-1176
98.F.S. Helmli, Scherer S (2001) Adaptive Shape from Focus with An Error Estimation in Light Microscopy, Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, Pula, Croatia, July: 188-193
99.M. Yang, O. Kwon (1995) Crater wear measurement using computer vision and automatic focusing, journal of materials technology. No.58, pp 362-36
100.J. Cho Q. Cheng F. Yu, and H. Yuanhao (2004) Instaneous velocity displacement and contour measurement by use of shadow moiré and temporal wavelet analysis, Applied Optics Vol. 21, No. 20
101.Y. Zhang, Y. Zhang, and C. Wen. A new focus measure method using moments. Image and Vision Computing, 18: 959-965, 2000.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top