跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳舒璇
研究生(外文):Shu-Hsuan Chen
論文名稱:應用時域有限差分法研究U型槽平板天線
論文名稱(外文):Application of FDTD Method to Study U-Slot Patch Antennas
指導教授:陳興義陳興義引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:99
中文關鍵詞:應用時域有限差分法平板天線
外文關鍵詞:FDTD MethodPatch Antennas
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用時域有限差分法成功的去研究U型槽平板天線及改良式U型槽平板天線的特性,而不是用商業軟體如HFSS、IE3D以及CST去作研究。時域有限差分法的準確性由實驗量測證明正確無誤。利用壹矩形金屬細長片與底層中心線成各種不同角度取代底層金屬板去改良U型槽平板天線,結果發現此改良式U型槽平板天線可以產生多頻區運作、寬頻帶、好的輸入阻抗匹配和高的天線效率。如果U型槽平板天線金屬底層嵌入U型磁性材料小平板,結果發現在逆程損耗10 dB 以上的頻寬變得非常寬且天線效率提高了。
The finite-difference time domain(FDTD) method, instead of commercial software packages such as HFSS, IE3D, and CST, is successfully used to study characteristics of U-Slot and modified U-slot Patch Antennas. The validation of the FDTD method is checked by measurements. The modified U-slot patch antenna using a metallic oblong-patch with different angles is respected to the center line as the bottom layer has been proven that it can provide wide-band enhancement, multi-band operation, good impedance matching, and high antenna efficiency. Finally, The modified U-slot patch antenna with a small ferromagnetic U-strip inserted in the metallic bottom layer has been shown to provide a return loss in excess of 10 dB over an extremely wide frequency range and high antenna efficiency.
TABLE OF CONTENTS
ABSTRACT(中文)...................................i
ABSTRACT.........................................ii
ACKNOWLEDGEMENTS.................................iii
CONTENTS.........................................iv
ILLUSTRATION OF CONTENTS.........................vi
Chapter 1 INTRODUCTION..........................1
1.1Background.....................................1
1.2Computational method...........................2
1.3Contents.......................................4

Chapter 2 FINITE DIFFERENCE TIME DOMAIN METHOD..6
2.1 Introduction................................. 6
2.2 Fundamental Concepts......................... 7
A. Maxwell Curl Equations.................... 7
B. Yee Cell Formulation.......................8
C. FDTD Basic Principles......................12

Chapter 3 ANALYSIS OF CHARACTERISTICS OF A
U-SLOT PATCH ANTENNAS USING
FINITE-DIFFERENCE
TIME-DOMAIN METHOD...................16
3.1 Introduction..................................16
3.2 The Finite Difference Time Domain
Method........................................19
3.3 Numerical Results and Measurement Data........23
3.4 Conclusion....................................44

Chapter 4 STUDIES OF MULTI-BAND OPERATION
AND BANDWIDTH ENHANCEMENT ON
MODIFIED U-SLOT PATCH ANTENNAS......45
4.1 Introduction..................................45
4.2 Designs of Multi- and Broad -Band
Patch Antennas................................49
4.3 Conclusions...................................92

Chapter 5 CONCLUSIONS...........................94
REFERENCE.........................................95
REFERENCES

[1] R. L. Li, G. DeJean, M. M. Tentzeris, J. Papapolymerous, and J. Laskar, “ FDTD analysis of patch antennas on high dielectric-constant substrates surrounded by a soft-hard surface,” IEEE, Trans. Magnetics, vol. 40, no. 2, pp. 1444-1447, Mar. 2004.

[2] C. Wu, K. L. Wu, Z. Q. Bi, and J. Litva, “ Accurate Characterization of planar printed antennas using finite-difference time-domain method,” IEEE, Trans. Antennas Propagat., vol. 40, no. 5, pp. 526-534, May 1992.

[3] H. J. Delgado and M. H. Thursby, “ A novel neural network combined with FDTD for the synthesis of a printed dipole antenna,” IEEE, Trans. Antennas Propagat., vol. 53, no. 7, pp. 2231-2236, July 2005.

[4] X. Zhang, J. Fang, K. K. Mei, and Y. Liu, “ Calculations of the dispersive characteristics of microstrips by the finite-difference time-domain method,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 2, pp. 263-267, Feb. 1988.

[5] D. M. Sheen , S. M. Ali, M. D. Abouzahra, and J. A. Kong, “1Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 7, pp. 849-857, July 1990.

[6] A. D. Brown, J. L. Volakis, L. C. Kempel, and Y. Y. Botros, “ Patch antennas on Ferromagnetic substrates,” IEEE Trans. Antennas Propagat. vol. AP-47, no. 1, pp. 26-32, Jan. 1999.

[7] H. Y. Yang, “ Characteristics of switchable ferrite microstrip antennas,” IEEE Trans. Antennas Propagat. vol. 44, pp. 1127-1132, Aug. 1996.

[8] J. Jin and J. L. Volakis, “ A hybrid finite element method for scattering and radiation by microstrip patch antennas and array residing in a cavity,” IEEE Trans. Antennas Propagat. vol. 39, no. 1, pp. 1598-1604, Nov. 1991.

[9] J. L. Volakis, T. Ozdemir, and J. Gong, “ Hybrid finite elements methodologies for antennas and scattering,” IEEE Trans. Antennas Propagat. vol. 45, pp. 493-507, Mar. 1997.

[10] 1K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., AP-14, pp. 302-307, 1966.

[11] 1A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp. 623-630, Aug. 1975.

[12] G. Mur, “Absorbing boundary condition for the finite-difference approximation of the time-domain electromagnetic-field equations ,” IEEE Trans. Electromag. Compat., vol. EMC-23, no. 4, PP. 377-382, 1981.

[13] E. Chang, S. A. Long, and W. F. Richards, “Experiment investigation of electrically thick rectangular microstrip antenna,” IEEE, Trans. Antennas Propagat., vol. AP-34, pp. 767-772, 1986.

[14] N. P. Agrawall, G. Kumar, and K. P. Ray, “Wide-band planar monopole antennas,” IEEE, Trans. Antennas Propagat., vol. 46, no. 2, pp. 294-295, Feb. 1998.

[15] E. Lee, P. S. Hall, and P. Gardner, “Compact wideband planar monopole antenna,” Electron., Lett., vol. 35, no. 25, pp. 2157-2158, Dec. 1999.

[16] S. M. Duffy, “An enhanced bandwidth design technique for electromagnetically coupled microstrip antennas,” IEEE, Trans. Antennas Propagat., vol. 48, no. 2, pp. 161-164, Feb. 2000.

[17] 1Z. N. Chen, “Suspended plate antennas with shorting strips and slots,” IEEE, Trans. Antennas Propagat., vol. 52, no. 10, pp. 2525-2531, Oct. 2004.

[18] 1J. F. Zurcher, “The SSFIP: A global concept for high-performance broadband planar antennas,” Electron., Lett., vol. 24, pp. 1433-1435, Nov. 1988.



[19] 1F. Croq, A. Papiernik, and P. Brachat, “Wideband aperture coupled microstrip subarray,” in IEEE Antennass and Propagation Symp., Dig., 1990, pp. 1128-1131.

[20] Z. F. Liu, P. S. Kooi, L. W. Li, M. S. Leong, and T. S. Yeo, “A method for design broad-band microstrip antennas in multilayered planar structures,” IEEE, Trans. Antennas Propagat., vol. 47, no. 9, pp. 1416-1420, Sept. 1999.

[21] 1R. Chair, K. M. Luk, and K. F. Lee, “Measurement and analysis of miniature multilayer patch antenna,” IEEE, Trans. Antennas Propagat., vol. 50, no. 2, pp. 244-250, Feb. 2002.

[22] 1D. M. Pozar and D. H. Schaubert, Microstrip Antennas, The Analysis and Design of Microstrip Antennas and Arrays. New York: IEEE Press, 1995.

[23] 1D. H. Schaubert and K. S. Yngvesson, “Experimental study of a microstrip array on high permittivity substrate,” IEEE, Trans. Antennas Propagat., vol. 34, pp. 72-97, Jan. 1986.

[24] 1T. K. Lo, “Miniature aperture-coupled microstrip antenna of very high permittivity,” Electron., Lett., vol. 33, pp. 9-10, 1997.

[25] 1S. Pinhas and S. Shtrikman, “Comparison between computed and measured bandwidth of quarter-wave microstrip radiators,” IEEE, Trans. Antennas Propagat., vol. 36, pp. 1615-1616, Nov. 1988.

[26] R. Chair, K. F. Lee, and K. M. Luk, “Bandwidth and cross-polarization characteristics of quarter-wave shorted patch antennas,” Microwave Opt. Technol. Lett., vol. 22, pp. 101-103, July 1999.

[27] 1R. B. Waterhouse, “Small microstrip patch antenna,” Electron., Lett., vol. 31, pp. 604-605, 1995.

[28] 1K. F. Lee, K. M. Luk, K. F. Tong, S. M. Shum, T. Huynh, and R. Q. Lee, “Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna, ” Proc. Inst. Elec. Eng., pt. H, vol. 144, pp. 354-358, Oct. 1997.

[29] M. Sanad, “Double C-patch antennas having different aperture shapes,” in Proc. IEEE AP-S Symp., Newport Beach, CA, June 1995, pp. 2116-2119.
[30] F. Yang, X X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band E-shaped patch antennas for wireless communications,” IEEE, Trans. Antennas Propagat., vol. 49, no.7, pp. 1094-1100, July 2001.

[31] Y. Ge, K. P. Esselle, and T. S. Bird, “E-shaped patch antennas for high-speed wireless networks,” IEEE, Trans. Antennas Propagat., vol. 52, no.12, pp. 3213-3219, Dec. 2004.

[32] S. I. Latif, L. Shafai, and S. K. Sharma, “Bandwidth enhancement and size reduction of microstrip slot antennas,” IEEE, Trans. Antennas Propagat., vol. 53, no.3, pp. 994-1003, Mar. 2005.

[33] R. Chair, C. L. Mak, K. F. Lee, K. M. Luk, and A. A. Kishk, “Miniature wide-band half U-slot and half E-shaped patch antennas,” IEEE, Trans. Antennas Propagat., vol. 53, no. 8, pp. 2645-2652, Aug. 2005.


[34] K. C. Gupta, and P. S. Hall, Analysis and Design of Integrated Circuit-Antenna Modules, John Wiley & Sons, Inc., New York, pp. 229-230, 2000.

[35] C. L. Holloway, K. C. Allen, and M. G. Laflin, “Analysis of composite walls for short path propagation modeling,” in Proc. IEEE AP-S Int. Symp., vol. 1 pp. 526-529, Newport Beach, CA. June 18-23, 1995.

[36] K. Karimullah, Theoretical and Experimental Study of the Proximity Effects of Thin-Wire Antenna in Presence of Biological Bodies, Dissertation, Michigan State University, Michigan, 1979.

[37] Network Analysis: Specifying Calibration Standards for the HP8510 Network Analyzer, Hewlett-Packard, Englewood, CO, HP Product Note 8510-5A, 1997.

[38]1Vector Network Analyzer User Manual, Hewlett-Packard, Englewood, CO, HP 8753D, 1998.

[39] E., Lee, P. S. Hall, and P. Gardner, “Dual band folded monopole/loop antenna for terrestrial communication system,” Electron. Lett, vol. 36, no. 24, pp. 1990-1991, 2000.

[40] F. S. Chang, S. H. Yeh, and K. L. Wong, “Planar monopole in wrapped structure for low-profile GSM/DCS mobile phone antenna,” Electron. Lett, vol. 38, no. 11, pp. 499-500, 2002.

[41] K. L. Wong, G. Y. Lee, and T. W. Chiou, “A low-profile planar monopole antenna for multiband operation of mobile handsets, “IEEE, Trans. Antennas Propagat., vol. 51, no. 1, pp. 121-125, Jan. 2003.

[42] Y. L. Kuo and K. L. Wong, “Printed double-T monopole antenna for 2.5/5.2 GHz dual-band WLAN operations, “IEEE, Trans. Antennas Propagat., vol. 51, no. 9, pp. 2187-2192, Sept. 2003.

[43] Z. D. Liu, P. Hall, and D. Wake, “Dual-frequency planar inverted-F antenna,“ IEEE, Trans. Antennas Propagat., vol. 45, no. 10, pp. 1451-1458, Oct. 1997.

[44] Y. X. Guo, A. K. Shackelford, K. F. Lee, and K. M. Luk, “Broadband quarter-wavelength patch antennas with a U-shaped slot,” Microwave Opt. Technol. Lett., vol. 28, no. 5, pp. 328-330, March 2001.

[45] A. K. Shackelford, K. F. Lee, and K. M. Luk, “Design of small-size wide-bandwidth microstrip-patch antennas,” IEEE, Trans. Antennas Propagat. Mag., vol. 45, no. 1, pp. 75-83, Feb. 2003.

[46] A. K. Shackelford, K. F. Lee, K. M. Luk, and R. Chair, “U-Slot patch antenna with shorting pin,” Electron., Lett., vol. 37, no. 12, pp. 729-730, Jun. 2001.

[47] C. A. Balanis, Advance engineering electromagnetics, John Wiley & Sons Inc., New York, pp. 315-317, 1989.

[48] H. Mosallaei and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE, Trans. Antennas Propagat., vol. 52, no. 9, pp. 2403-2414, Sept. 2004.

[49] Model 37xxxC Vector Network Analyzer Operation Manual, Anritsu, 490 Jarvis Drive, Morgan Hill, CA, Revision: B, Dec. 2001.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 11.吳忠政(1997),「苗栗縣三義鄉雕刻淵源回顧談」,苗栗文獻,第12期,pp.203-206。
2. 9.李龍泉(2003),「刻痕情深-木雕的第一類接觸」,社教資料雜誌,第298期,pp.8-12。
3. 43.顧琪君(2000),「由傳統工藝談工藝的振興」,臺灣工藝,第5期,pp.10-17。
4. 41.龐均(1990),「薪火相傳 文化不滅」,藝術家,第306期, pp.493-494。
5. 40.諸葛正(1997),「博物館與地域活性化」,臺灣手工業,第63期,pp.68-75。
6. 39.歐嘉瑞 胡湘源(2001),「地區產業振興策略」,工業簡訊,第12期,pp.47-56。
7. 38.蔡錦旺(2003),「木雕之美」,社教資料雜誌,第298期,pp.1-4。
8. 35.劉新圓(2001),「應積極振興文化產業」,國家政策論壇,第1卷,第3期,p.121-122。
9. 32.楊宗孝(2002),「活化具有地方特色工藝產業」,臺灣工藝,第13期,pp.13-61。
10. 28.黃淑卿(1995),「臺灣觀光事業概況」,產業經濟,第161期,pp.5-22。
11. 27.黃健敏(1986),「三義神雕藝術造街」,臺灣手工業,第60期,pp.30-36。
12. 26.張明惠(2003),「木雕之鄉-三義」,社教資料雜誌,第298期,pp.5-7。
13. 23.許汶玉(1999),「與木雕歷史的對話--三義木雕博物館」,鄉城生活雜誌,第61期,pp.22-24。
14. 22.許汝玉(1999),「體制外團隊打造新三義」,鄉城生活雜誌,第61期, pp.32-33。
15. 21.許汶玉(1999),「三義漫遊記」,鄉城生活雜誌,第61期, pp. 7-33。