跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃博南
研究生(外文):Huang Fu Nan
論文名稱:表面幾何因子對通訊頻率響應之研究
指導教授:徐鎮徐鎮引用關係
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:118
中文關鍵詞:微帶天線幾何因子頻率
外文關鍵詞:增益
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來通訊系統向著小型化、更大容量、多功能和智能化的趨勢發展,而相對微帶天線也就指向多頻帶及寬頻帶的特性發展。在本篇論文中,以一接近通訊頻率之傳統矩形微帶天線為研究的主軸,將各種幾何因子製作於微帶天線上,此幾何因子視為各單元天線,使得各單元天線間產生耦合作用,而影響天線所激發出來的頻寬與增益。在相同的輻射面積下,我們利用在輻射金屬面上或整面基板上塗敷不同金屬高分子材料來改變天線的共振耦合情形。其幾何因子材質、面積、尺寸、形狀、排列、相互間隙,而形成不同的激發模態,並進一步探討對通訊頻帶的影響。
幾何因子對微帶天線響應程度從實驗結果顯示,尺寸的效果與幾何因子材料有關,使用導電銀膠作幾何因子材質小尺寸共振能量集中效應比大尺寸來的大,而使用導電銅膠為幾何因子材料時結果卻相反。面積效應影響甚鉅,大面積塗附整個矩形微帶天線(不包含饋入線),幾乎造成整個微帶天線特性的改變。若是在矩形微帶天線輻射金屬片上製作幾何因子,不論幾何因子材料使用導電銅膠或銀膠,六角形幾何因子產生效應皆比其它形狀來的優。而若是在矩形微帶天線增加幾何因子總面積同基板大小時,每種形狀都造成很大的差異,且都改變原參考天線特性。另外,矩形及六角形對於高階模態有一些寬頻化的效應。幾何因子間隙與因子面積比在適當的條件下,將產生寬頻化效果,且共振能量集中於低頻。實驗結果發現,在矩形微帶天線輻射金屬片上製作矩形幾何因子,材質使用導電銀膠產生效應皆比使用導電銅膠來的大許多,尤其在低階模態。但若在矩形微帶天線輻射金屬片上製作三角形幾何因子,則導電銅膠效果優於導電銀膠,可能是材質與耦合極化的程度有關。三角幾何因子排列方式,不論編排成六邊形、漏斗形、蝶形排列,都會造成增益的效果。但六邊形排列共振能量集中至低階模態效應較大。
Communication systems are developing towards miniaturization, large capacity, multi-functional, and intelligent trend in recent years. The demands of low profile microstrip antenna with multifrequency bands and wide bandwidth are requested. In this paper, various geometry factors are printed on the radiation plane of rectangle microstrip antenna. Each of geometry factors is regarded as individual antenna unit. With the spacing of the geometry antenna decreasing, the coupling from the neighboring units arises and, therefore, some small units are coupled to be a larger unit. As a result, the frequency band and bandwidth are affected. The factors include geometry size, area, shape, spacing, materials, and arrangements are discussed.
The size of the geometry factor is related to the printing materials. Using conducting silver glue, the resonance energy concentrates in low frequency for small size unit. On the contrary, the resonanc expands in larger frequency range for Cu units. The printing area strongly determine the frequency response. Large area promote the frequency band and band width. Hexagon geometry factor causes the frequency response more profound than those of others. The rectangle and hexagon geometries have the effect of broading bandwidth especially for high order modes. The spacing of the geometry factor increase the coupling effect, and cause the bandwidth broadening and concentrate in low frequency range. Using the Ag glue, the frequency response increase more than that of the Cu glue, especially in low frenquency. The Cu triangular unit shows the superior responses to the Ag unit. It might be related to the polarised degree in coupling. The arrangement of the triangular units affect the anttena gain no matter with the arrangements of grade hexagon, funnel shape, and butterfly shape. The resonance energy of six mao arrangement concentrates on low frequency mode.
誌謝 ii
摘要 iv
ABSTRACT v
目錄 vi
表目錄 ix
圖目錄 x
1.緒論 1
1.1前言 1
1.2研究背景與動機 1
1.3論文提要 3
2.文獻回顧 4
2.1天線基本理論及重要特性 4
2.1.1概述 4
2.1.2馬克斯威爾基本方程式 5
2.1.3指向性及增益 6
2.1.4阻抗及輻射效率 9
2.1.5極化 10
2.1.6互易定理 11
2.2微帶天線型式與寬頻化方法 14
2.2.1微帶天線的型式 14
2.2.2微帶天線寬頻化 15
2.3微帶天線的分析 17
2.3.1傳輸線模型理論 17
2.3.2空腔模型理論 21
2.3.3全波分析法 28
2.4微帶天線陣列與耦合效應 34
2.4.1微帶天線之耦合效應 34
2.4.2天線陣列方向圖乘積定理 37
3.實驗方法與量測 41
3.1實驗規劃 41
3.1.1微帶天線設計 42
3.1.2微帶天線製作 43
3.1.3幾何因子微帶天線製作 51
3.2量測儀器 54
4.實驗結果 56
4.1幾何因子尺寸對微帶天線頻率及增益之影響 56
4.2幾何因子面積對微帶天線頻率及增益之影響 63
4.3幾何因子形狀對微帶天線頻率及增益之影響 73
4.4幾何因子間隙對微帶天線頻率及增益之影響 88
4.5幾何因子材質對微帶天線頻率及增益之影響 93
4.6三角幾何因子排列對微帶天線頻率及增益之影響 101
5.討論 105
5.1幾何因子尺寸效應 105
5.2幾何因子面積效應 106
5.3幾何因子形狀效應 107
5.4幾何因子間隙效應 109
5.5幾何因子材質效應 110
5.6幾何因子三角排列效應 111
6.結論 112
參考文獻 113
自傳 118
[1]Ohmaru, K. Ito.,K. and Konishi, Y.,“Planar antennas for
satellite reception,”IEEE Trans.broadcasting,Vol.34,No.4
,pp.457-464,1988.
[2]張鈞、劉克誠、張賢鋒、赫崇駿,微帶天線理論與工程,國防工業出版社
,第4頁,1988,中華人民共和國.
[3]Chang, E., Long,S.A.,and Richards,W.F.,“An experimental
investigation of electrically thick rectangular microstrip
antennas,”IEEE Trans. Antennas Propagat, Vol.34,No.6,
pp.767-772, 1986.
[4]Lee,K.F.,Luk,K.M.,Tong,K.F.,Yung,Y.L.,and Huynh,T.,“Experimental
study of a two-element array of U-slot patches,”Electron.Lett,
Vol. 32,No.5,pp.418-420,1996.
[5]Fayyaz,N.,and Safavi-Naeini,S.,“Bandwidth enhancement of a
rectangular patch antenna by integrated reactive loading,”
IEEE AP-S Int.Symp.Dig,Vol.2,pp.1100-1103,Jun,1998.
[6]Pues,H.F.,and Capelle,A.R.V.D.,“An impedance-matching technique
for increasing the bandwidth of microstrip antennas,”IEEE Trans.
Antennas Propagat,Vol.37,No.11,pp.1345-1354,1989.
[7]Lee,R.Q.,and Lee,K.F.,“Experimental study of the two
layerelectromagnetically coupled rectangular patch antenna,”
IEEE Trans. Antennas Propagat,Vol.38,No.8,pp.1298-1302,1990.
[8]Egashira,S.,and Nishiyama,E.,“Stacked microstrip antenna with
wide bandwidth and high gain,”IEEE Trans.Antennas Propagat,
Vol.44, No.11,pp.1533-1534,1996.
[9]Fang,S.T.,Wong,K.L.,and Chiou,T.W.,“Bandwidth enhancement of
inset-microstrip-line-fed equilateral-triangular microstrip
antenna,“ELECTRONICS LETTERS,Vol.34,No.23,pp.2184-2186,1998.
[10]Pozar, D. M., and Jackson, R. W., “An Aperture Coupled
Microstrip Antenna with a Proximity Feed on a Perpendicular
Substrate,”IEEE Trans. Antennas Proporgat, Vol.35, No.6,
pp.728-731, 1987.
[11]Targonski, S. D., Waterhouse, R. B., and Pozar, D. M., “An
aperture coupled stacked patch antenna with 50% bandwidth,”
IEEE AP-S Int. Symp. Dig, Vol. 1, pp. 18-22, Jul, 1996
[12]Forenza, A., Sun, F., and Heath, R.W., Jr., “Pattern diversity
with multi-mode circular patch antennas in clustered MIMO
channels,” IEEE Trans. Antennas Proporga., Vol. 38, pp. 438-441,
Jul, 2005.
[13]Bekraoui, Leila., “Low Cost Broadband Microstrip Antenna for
Satellite-TV Reception,” IEEE Trans. Antennas Proporgat, Vol. 2,
pp. 916-919, Aug, 1999.
[14]Huang, C. Y., Chang, C. M., and Wong, K. L., “Design of GPS
microstrip antenna using nearly square patch,” IEEE Microwave
Conference Proceedings, Vol. 1, No. 2, pp. 237-240, 1997.
[15]Denidni, T. A., Hotton, M., “Experimental investigations of
broadband microstrip antenna for PCS applications,” IEEE
Vehicular Technology Conference, Vol. 3, pp. 1764-1767, Jul, 1999.
[16]Lu, L., Coetzee, J. C., “Reduced-size microstrip patch antenna
for Bluetooth applications,” IEEE Electronics Letters, Vol. 41,
No.17, pp. 13-14, 2005.
[17]Ghannoum, H., Bories, S., Roblin, C.,“Probe Fed Stacked Patch
Antenna for UWB Sectoral Applications,”IEEE International
Conference, pp.97-102, Sept, 2005.
[18]Munson, R. E., “Conformal microstrip antennas and microstrip
phased arrays,” IEEE Trans. Antennas Proporgat, Vol. 22, No. 1,
pp. 74-78, 1974.
[19]Huang, C. H., and Hsu, P., “Effects of feed modeling on the
evaluation of input impedance of microstrip Antenna,” IEEE
Trans. Antennas Magnetics,Vol. 25, No. 4, pp. 3058-3060, 1989.
[20]Wen, C. P., “Coplanar Waveguide:A Surface Strip Transmission
Line Suitable for Nonreciprocal Gyromagnetic Device
Applications,”IEEE Trans. Microwave Theory Tech, Vol. 17, No.
12, pp. 1087-1090, 1969.
[21]Munson, R. E., “Conformal microstrip antennas and microstrip
phased arrays,” IEEE Trans. Antennas Proporgat, Vol. 22, No.1,
pp. 74-78, 1974.
[22]Howell, J. Q., “Microstrip antennas,” IEEE Trans. Antennas
Proporgat, Vol. 23, No.1, pp. 90-93, 1975.
[23]Shen, L. C., Long, S. A., Allerding, M. R., and Walton, M.
D.,“Resonant frequency of a circular disk printed-circuit
antenna,” IEEE Trans. Antennas Proporgat, Vol. 25, No.4,
pp. 595-596, 1977.
[24]田中平,基本電波學理論及應用,復漢出版社,台南,第2章,第24-25頁,2000。
[25]蔡昇旭,天線設計原理,五洲出版社,台北,第36頁,1975。
[26]李宇剛,天線解析,復文書局,台南,第13頁,1978。
[27]Garvin, G. W., Munson, R. E., Ostwald, L. T., and Schroeder,
K.G., “Missile base mounted microstrip antenna,” IEEE Trans.
Antennas Propagat, Vol. 22, No. 5, pp. 604-610, 1977,
[28]Pozar, D. M., “Microstrip Antennas,” Proc. IEEE, Vol. 80, No.
1, pp. 79-91, 1992.
[29]Liu, Z. F., Kooi, P. S., Li, L. W., Leong, M. S., and Yeo, T.
S., “A method for designing broad-band microstrip antennas
i nmultilayered planar structures,” IEEE Trans. Antennas
Proporgat, Vol. 47, No. 9, pp. 1416-1420, 1999.
[30]Jackson, D. R., and Alexopoulos, N. G., “Simple approximate
formulas for input resistance, bandwidth, and efficiency of a
resonant rectangular patch,” IEEE Trans. Antennas Proporgat,
Vol. 39, No. 3, pp. 407-410, 1991.
[31]卓勝鵬,最新天線工程-行動通訊時代的天線技術,全華科技圖書股份有限公司
,台北,第1-36頁,1998。
[32]Demeryd, A. G., “Linearly polarized microstrip antennas,” IEEE
Trans.Antennas Propagat, Vol. 24, No. 6, pp. 846-851, 1976.
[33]Van Lil. E., and Van De Capelle, A., “Transmission line model
for mutual coupling between microstrip antennas,” IEEE Trans.
Antennas Propagat, Vol. 32, No. 8, pp. 816-821, 1984.
[34]Richards, W. F., Lo, Yuen., Harrison. D., “An improved theory
for microstrip antenna and application,” IEEE Trans. Antennas
Propagat, Vol. 29, No. 1, pp. 38-46, 1981.
[35]Lo, Y. T., Solomon, D., and Richards, W. F., “Theory and
experiment on microstrip antenna,” IEEE Trans. Antenna Propagat,
Vol. 27, No. 2, pp. 137-145, 1979.
[36]Carver, K., Mink, J., “Microstrip Antenna Technology,” IEEE
Trans.Antennas Propagat, Vol. 29, No. 1, pp. 2-24, 1981.
[37]Elliott, Robert S., antenna theory and design, Prentice-Hall, New
Jersey, pp. 102, 1981.
[38]Dearnley, R. W., and Barel, R. F., “A Comparison of Models to
Determine the Resonant Frequencies of a Rectangular Microstrip
Antenna,” IEEE Trans. Antennas Propagat, Vol. 37, No. 1, pp.
114-118, 1989.
[39]Bahl, I. J., Bhartia, P., and Stuchly, S. S., “Design of
Microstrip Antennas Covered with a Dielectric Layer,” IEEE
Trans. Antennas Propagat, Vol. 31, No. 2, pp. 314-318, 1982.
[40]Garg, Remesh., Bhartia, Prakash., Bahl, Inder., and Ittipiboon,
Apisak., Microstrip Antenna Design Handbook, ISBN 0-89006-513-6,
Artech House, Boston, pp. 258-259, 2001.
[41]湯嘉倫,94年度通訊人才培訓計畫天線理論與設計技術課程講義,財團法人自強工
業科學基金會,新竹,第20頁,2005。
[42]翁金輅,平板天線專題實驗 教材大綱,國立中山大學電機工程學系,第6頁,
1997。
[43]Wu, M. D., Deng, S. M., Wu, R. B., and Hsu, P., “Full-wave
characterization of the mode conversion in a coplanar waveguide
right-angled bend,” IEEE Trans. Microwave Tech. Theory, Vol. 43,
No. 11, pp. 2532-2538, 1995.
[44]Newman, E. H., and Tulyathan, P., “Analysis of microstrip
antennas using moment methods,” IEEE Trans. Antennas Propagat,
Vol. 29, No. 1, pp. 47-53, 1981.
[45]Pozar, D. M., “Input impedance and mutual coupling of
rectangular microstrip antennas,”IEEE Trans. Antennas Propagat,
Vol. 30, No. 6, pp. 1191-1196, 1982.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top