跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宏懋
研究生(外文):Hong-Mau Tsai
論文名稱:砷化銦鎵之PIN光偵測器研製與電性量測
論文名稱(外文):InGaAs PIN photodetector fabrication and electronics measurement
指導教授:陳子江陳子江引用關係
指導教授(外文):Tzu-Chiang Chen
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:111
中文關鍵詞:砷化銦鎵光偵測器鋅擴散
外文關鍵詞:PIN photodetectorInGaAsZn diffusion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,將針對PIN光偵測器做一串的研究,了解研製方法步驟與一些相關的量測與分析。
將以金屬有機化學氣相沈積磊晶(MOCVD)成長砷化銦鎵/磷化銦。在封入石英管進行鋅的閉管擴散,形成p型區與n型區。分別進行材料特性方面量測,與PIN元件電性量測。來了解其PIN光偵測器特性而進行分析與研究,而後在進行PIN光偵測器的磊晶結構改良與製程步驟改變來達到元件最佳特性。
材料特性方面,使用霍爾量測(Hall Measurement) ,二次離子質譜儀(Secondary Ion Mass Spectroscopy)等量測鋅的閉管擴散後的材料特性。進行鋅閉管擴散後,在常溫下300K,載子型別為p型,載子濃度為3.85×1018 /cm3,載子遷移率為3250/v×s,在低溫下77K,載子型別為p型,載子濃度為2.17×1015 /cm3,載子遷移率為598/v×s。
試片9231量測出的結果,進行分析。針對分析結果,InGaAs阻擋Zn元素擴散與暗電流偏高問題。在磊晶方面改變結構將上層InGaAs縮短。在製程上製作擴散區域與表面鋪蓋SiO2,將試片4291-3完成元件。進行IV量測與光響應量測。在逆偏壓0V到3V之間,平均暗電流約比9231試片下降約100倍,在1310nm波長範圍中光響應平均約為0.5(A/W)。完成元件的改進,並對量測結果進行分析與研究。
In the thesis, we mainly focus on experiment, fabrication and device characteristic analysis of PIN photodetector.
We use MOCVD to grow of InGaAs/InP epitaxial layers. It will be diffusion of Zn after bottle into Quartz tube. It will cause P-type and N-type region.We will part from chip and measure of material characteristic, and make PIN device of electronics measurement. To understand that PIN photodetector the characteristic of the analyses and experimental.
For material characteristic, we use Hall measurement and secondary ion mass spectroscopy to measure of material characteristic after diffusion of Zn. After diffuse Zn, carrier type is p-type and carrier concentration is 3.85×1018 /cm3 and carrier mobility is 3250/v×s in 300K temperature. In 77K temperature, carrier type is p-type and carrier concentration is 2.17×1015 /cm3 and carrier mobility is 598/v×s.
Measure result of 9231 wafer and analysis it.The question that have high dark current and InGaAs prevents Zn diffusion. Change the structure is to shorten upper ingaas layer of epitaxy. Make diffusion windows and use SiO2 coating of fabrication.Complete device of 4291-3 wafer. Proceed to electronics measurement and responsivity measurement. Reverse bias is between 0V~3V, dark current reduce by 100 times. Photon responsivity is about 0.5 (A/W) in 1310nm wavelength range. Complete the improvement of the device, analyse and study for result of measurement.
誌 謝
摘 要
ABSTRACT
目 錄
表目錄
圖目錄
符號表
符號表
1. 緒論
1.1 研究動機
1.2 PIN光偵測器簡介
1.3 內容提要
2. 實驗原理與PIN光偵測器理論基礎
2.1 雜質參雜
2.2 擴散理論
2.2.1 原子擴散方式
2.2.2 原子擴散機制
2.3 霍爾量測
2.4 PIN光偵測器基本理論
2.4.1 PIN光偵測器基本工作原理
2.4.2 光吸收係數,量子效率與響應度
2.4.3 PIN光二極體暗電流機制
3. PIN元件製程
3.1 金屬有機化學氣相沈積磊晶技術
3.2 石英閉管擴散設備
3.3 PIN光偵測器元件製程步驟
3.3.1 元件製程
3.3.2 試片9231製程步驟
3.3.3 試片4291-3製程步驟
4. PIN光二極體量測與討論
4.1 閉管擴散PIN光偵測器材料特性量測
4.1.1 霍爾量測
4.1.2 二次離子質譜儀量測
4.2 閉管擴散PIN光偵測器電性量測
4.2.1 試片9231電流I-V特性量測
4.2.2 試片4291-3電流I-V特性量測
4.2.3 試片4291-3光電流I-V特性量測
4.2.4 試片4291-3光響應量測
4.2.5 試片4291-1量子效率計算
4.2.6 試片4291-1偵測度計算
5. 結論與未來方向
參考資料
自傳
[1] 曾葉嘉,“氧化侷限型砷化鎵垂直共振腔面射型雷射之研製與特性分析”,碩士論文,國防大學中正理工學院,桃園,2005。
[2] 周冠羽,“砷化銦鎵的電性研究與平面型PIN 光偵測器的製作”,碩士論文,國立中央大學,桃園,2000。
[3] 黃武駿,“垂直共振腔面射型雷射與PIN光檢器之研製 ”,碩士論文,國立中央大學,桃園,2002。
[4] 張俊彥、鄭晃忠,積體電路製程及設備技術手冊,中華民國產業科技發展協進會、台灣電子材料與元件協會,新竹,第287-292頁,2003。
[5] 紀國鐘、蘇炎坤,光電半導體技術手冊,台灣電子材料與元件協會,新竹,第273-293頁,2002。
[6] Neamen, D. A., Semiconductor Physics and Devices, McGraw-Hill, Singapore, pp. 177-180, 2002.
[7] Neamen, D. A., Semiconductor Physics and Devices, McGraw-Hill, Singapore, pp. 103-145, 2002.
[8] Neamen, D. A., Semiconductor Physics and Devices, McGraw-Hill, Singapore, pp. 617-642, 2002.
[9] Kasap, S. O., Optoelectronics And Photonics: Prinicples and Practices, Pearson Prentice-Hall, United States of America, pp. 217-243, 2001.
[10] Sze, S. M., Physics of Semiconductor Devices, John Wiley & Sons. Inc., United States of America, pp. 311-318, 1936.
[11] Sze, S. M., Physics of Semiconductor Devices, John Wiley & Sons. Inc., United States of America, pp. 47-56, 1936.
[12] Sze, S. M., Physics of Semiconductor Devices, John Wiley & Sons. Inc., United States of America, pp. 57-66, 1936.
[13] Sze, S. M., Physics of Semiconductor Devices, John Wiley & Sons. Inc., United States of America, pp. 88-89, 1936.
[14] Sze, S. M., Physics of Semiconductor Devices, John Wiley & Sons. Inc., United States of America, pp. 109-118, 1936.
[15] Sze, S. M., Physics of Semiconductor Devices, John Wiley & Sons. Inc., United States of America, pp. 453-460, 1936.
[16] Sze, S. M., Physics of Semiconductor Devices, John Wiley & Sons. Inc., United States of America, pp. 349-390, 1936.
[17] Sedra, S., Microelectronic Circuits, Oxford University Press, New York, pp. 131-155, 2002.
[18] 廖崇吉,“量子點紅外線偵檢器之研製”,碩士論文,國防大學中正理工學院,桃園,2006。
[19] Ettenberg, M. H., Lange, M. J., Sugg, A. R., Cohen, M. J., and Gregory H., “Zinc Diffusion in InAsP/InGaAs Heterostructures,” Journal of Electronic Materials, Vol. 28, pp. 1433-1439, December, 1999.
[20] Serreze, H. B., and Marek, H. S., “Zn Diffusion in InP:Effect of Substrate Dopant Concentration,” Applied Physics Letters, Vol. 49, pp. 210-211, July, 1986.
[21] Huang, Y. H., Yang, C. C., Peng, T. C., Cheng, F. Y., Wu, M. C., Tsai, Y. T., Ho, C. L., Liu, I. M., Hong, C. C., and Lin C. C., “10-Gb/s InGaAs p-i-n Photodiodes with Wide Spectral Range and Enhanced Visible Spectral Response,” IEEE Photonics Technology Letters, Vol. 19, pp. 339-341, March, 2007.
[22] Matine, N., Dvorak, M. W., Pelouard, J. L., Pardo, F., and Bolognesi, C. R., “InP in HBTs by Vertical and Lateral Wet Etching,” Indium Phosphide and Related Materials, pp. 195-198, May, 1998.
[23] Budianu, E., Purica, M., Rusu, E., and Nan, S., “Speed and Efficiency of the PIN Homojunction Photodiodes on InGaAs/InP Heterostructures,” Advanced Semiconductor Devices and Microsystems, pp. 87-90, October, 1998.
[24] Cho, S. R., Kim, J., Oh, K. S., Yang, S. K., Baek, J. M., Jang, D. H., Kim, T. I., and Jeon, H., “Enhanced Optical Coupling Performance in An InGaAs Photodiodeintegrated with Wet-Etched Microlens,” IEEE Photonics Technology Letters, Vol. 14, pp. 378-380, March, 2002.
[25] Elias, P., Kostic, I., and Hasenohrl, S., “Polar Diagram of Wet-Etched [100] InP,” Indium Phosphide and Related Materials Conference, Sweden, pp. 229-231, 2002.
[26] Ohnaka, K., Kubo, M., and Shibata, J., “A Low Dark Current InGaAs/InP p-i-n Photodiode with Covered Mesa Structure,” IEEE Transactions on Eelectron Devices, Vol. 34, pp. 199-204, February, 1987.
[27] Duan, N., Wang, X., Li, N., Liu, H. D., and Campbell, J. C., “Thermal Analysis of High-Power InGaAs–InP Photodiodes,” IEEE Journal of Quantum Electronics, Vol. 42, pp. 1255-1258, December, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top