跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李偉華
研究生(外文):Wei Hua Li
論文名稱:燃燒合成奈米氧化鋅微粉及特性分析
論文名稱(外文):Characterization of nanocrystalline ZnO whisker by combustion synthesize method(SHS)
指導教授:黃其清
指導教授(外文):C.C.Hwang
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:63
中文關鍵詞:氧化鋅鬚晶氧化鋅微粉反應器反應物圓柱狀空氣氧化鋅微粉反應器反應物圓柱狀空氣
外文關鍵詞:ZnOwhisker
相關次數:
  • 被引用被引用:1
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本研究以鋅粉(Zn)及適量之硝酸氨(NH4NO3)為反應物,已成功利用一高溫自行傳播燃燒合成法(Self-propagating high-temperature synthesis process, SHS)合成氧化鋅微粉。首先將反應物均勻混合,壓製成圓柱狀之反應錠(reactant compact)後,置於一空氣氣氛之密閉反應器中,經由反應器中鉻克合金加熱線圈直接引燃生成大量的白色氧化鋅微粉,初得產物之產率相當高且含有大量的四腳柱狀鬚晶。最後根據SEM、TEM、XRD、EPMA及EDS等各項檢測結果,針對反應物組成及反應錠成形壓力對於在燃燒反應時之反應狀態及初得產物之產率的影響提出一反應機構解釋、說明之。

關鍵詞:自行傳播燃燒合成法、氧化鋅、形態、反應機構。
ABSTRACT

A self-propagating high-temperature synthesis (SHS) process has been established for preparation of ZnO powder. Zn and an appropriate amount of NH4NO3 powders were mixed and pressed into a compact, which was placed in a closed chamber with air atmosphere. The synthesis reaction was ignited by heating directly the compact, and as-synthesized products with high yield (~95%) as well as a great deal of tetrapod wiskers could be obtained. Both the reaction phenomenon and the product yield were affected by the reactant composition and the compact-forming pressure, which might be explained by a proposed reaction mechanism.

Keywords: SHS, ZnO, Morphology, Reaction mechanism
目錄

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 vii
圖目錄 viii
1. 前言 1
2. 文獻回顧 3
2.1 氧化鋅簡介 3
2.2 氧化鋅的發光機制 5
2.3 氧化鋅的應用 7
2.4 氧化鋅粉末的製備方法 8
2.4.1 氣相冷凝法 9
2.4.2 溶膠凝膠法 9
2.4.3 沈澱法 9
2.4.4 水熱法 9
2.4.5 微乳化法 10
2.4.6 噴霧熱解法 10
2.5 燃燒合成法簡介 11
2.6 研究動機 12
3. 實驗方法 14
3.1 藥品 14
3.2 分析儀器設備 14
3.3 儀器分析說明 15
3.4 實驗步驟 16
3.4.1發展新製程 16
3.4.2 實驗描述 17
3.4.3 特性分析 18
4. 結果 21
4.1 反應現象 21
4.2 初得產物之特性分析 24
4.3 實驗參數之影響 28
5. 討論 30
5.1 反應機構 30
5.2 實驗參數之影響 38
5.3 製程之優點 38
5.4 不同燃燒合成方式製備氧化鋅微粉 40
5.5 未來展望 43
6. 結論 46
參考文獻 47
論文發表 52
中英文自傳 53

表目錄

表2.1 氧化鋅(ZnO)之物化性質 4
表2.2 紫外光、可見光、紅外光所產生波長範圍 5
表2.3 一般半導體激發之臨界波長 6
表2.4 奈米晶態氧化鋅粉體的製備方法 8

圖目錄

圖3.1 Zn粉微結構形態之SEM照片 19
圖3.2 實驗反應器概要圖:(a)反應錠、(b)熱阻絲、(c)電極、(d)可調整高低之反應錠平台、(e)熱電偶、(f)熱電偶支稱架、(g)可調整高低之熱電偶平台、(h)熱電偶導線、(i)觀察窗、(j)真空壓力表、(k)排氣口及微粒過濾器、(l)真空閥、(m)氣體通入口 20
圖4.1 燃燒反應過程的溫度-時間關係圖:(a)含量8% NH4NO3反應錠、(b)未含NH4NO3比重反應錠、(c) Zn蒸氣壓及溫度之關係圖[35] 23
圖4.2 產物外觀與不同部位產物之SEM照片:(a)反應錠蓬鬆狀初得產物外觀、(b)外部、(c)內部、(d)底部 25
圖4.3 (a)反應器內壁沉積薄膜外觀;(b)反應器內壁沉積薄膜之SEM照片 26
圖4.4 四個不同部位所獲得的樣品之XRD圖:(a)外部;(b)內部;(c)底部;(d)內壁沉積薄膜 27
圖4.5 不同NH4NO3含量反應錠對產率之影響 29
圖4.6 不同成形密度反應錠對產率之影響 29
圖5.1 不同實驗階段所測量之XRD圖:(a)加熱前;(b)Ar氣氣氛下加熱15秒後;(c)空氣氣氛下再經燃燒反應後(NH4NO3含量:8%、成形壓力:3.74 g/cm3) 32
圖5.2 Ar氣氣氛下反應15秒後,反應錠頂端表面獲得的產物之SEM照片 33
圖5.3 (a)四腳柱狀ZnO鬚晶之TEM照片;(b)腳柱末端近六角形平面之SEM照片 35
圖5.4 四腳柱狀ZnO核心部位之TEM照片,插圖為腳柱之晶格紋路與對應選區電子繞射圖 36
圖5.5 電子探測微分析儀(Electron Probe X-Ray Microanalyzer, EPMA)對ZnO晶鬚自根部至尖端進行Zn與O之元素分析 37
圖5.6 三種產物之XRD圖:(a) x=0.00,y=1.11;(b) x=2.50,y=0.56;(c) x=5.00,y=0.00 41
圖5.7 三種產物外觀型態的SEM照片:(a) x=0.00,y=1.11;(b) x=2.50,y=0.56;(c) x=5.00,y=0.00 42
圖5.8 「低壓三區加熱裝置反應器(Low Pressure 3-Zone Heating Element Reactor)」示意圖 45
參考文獻

[1] 朱俊隆、陳怡君、劉明鴻、盧信沖,化工,第52 卷,第4 期,頁82-103,民國94 年8 月。
[2] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner,“Recent progress in processing and properties of ZnO”Prog. Mater. Sci., Vol. 50, pp. 293-340, 2005.
[3] Aleksandra B. Djurisic, Yu Hang Leung, Wallace C. H. Choy, Kok Wai Cheah, Wai Kin Chan“Visible photoluminescence in ZnO tetrapod and multipod structures”Applied Physics Letters, Vol. 84, pp. 2635-2637, 2004.
[4] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade,“Mechanisms behind green photoluminescence in ZnO phosphor powders”J. Appl. Phys., Vol. 79, pp. 7983, 1996.
[5] Basu, S., Dutta, A.,“Room-temperature hydrogen sensors based on ZnO”Materials Chemistry and Physics, Vol. 47, pp. 93-96, 1997.
[6] Chu. Sheng-Yuan, Water. Walter, Liaw. Jih-Tsang,“An investigation of the dependence of ZnO film on the sensitivity of Love mode sensor in ZnO/quartz structure”Ultrasonics, Vol.41, pp. 133-139, 2003.
[7] Dayan N. Jayadev, Sainkar S. R., Karekar R. N., Aiyer R. C.,“Formulation and characterization of ZnO:Sb thick-film gas sensors” Thin Solid Films, Vol. 325, pp. 254-258, 1998.
[8] J. Wu, C. Xie, Z. Bai, B. Zhu. K. Huang, and R. Wu,“Preparation of ZnO-glass varistor from tetrapod ZnO nanopowders”Mater. Sci. Engi. B, Vol. 95, pp. 157-161, 2002.
[9] V.C. Sousa, A.M. Segadaes, M.R. Morelli, R.H.G.A. Kiminami,“Combustion synthesized ZnO powders for varistor ceramics”International Journal of Inorganic Materials, Vol. 1, pp. 235-241, 1999.
[10] W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films,” Mater. Lett., Vol. 55, pp. 67-72, 2002.
[11] S. Y. Chu, W. Water and J. T. Liaw, “Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering” J. Eur. Cera. Soc., Vol. 23, pp. 1593-1598, 2003.
[12] R. L. Hoffman,“ZnO-based transparent thin-film transistors”Appl. Phys. Lett., Vol. 82, pp. 733-735, 2003.
[13] Yabe Shinryo, Yamashita Mika, Momose Shigeyoshi, Tahira Kazuyuki, Yoshida Sakae, Li Ruixing,“Synthesis and UV-shielding properties of metal oxide doped ceria via soft solution chemical processes”Int. J. Inor. Mater., Vol. 3, pp. 1003-1008, 2001.
[14] Hang Leung Yu, Djuris ic, Aleksandra B., H. Choy Wallace C., Hai Xie Mao, Gao Ju, Wai Cheah Kok,“Synthesis and properties of ZnO multipod structures”Journal of Crystal Growth, Vol. 274, pp. 430-437, 2005.
[15] Chung Ro Lee, Hoong Woo Lee, Jae Sung Song, Whung Whoe Kim, and Sung Park,“Synthesis and Ag Recovery of Nanosized ZnO Powder by Solution Combustion Process for Photocatalytic Applications”, Journal of Materials Synthesis and Processing, Vol. 9, pp. 281-286, 2001.
[16] Sung Park, Dong-Woo Lee, Jae-Chun Lee,“Photocatalytic Silver Recovery Using ZnO Nanopowders Synthesized by Modified Glycine-Nitrate Process”, J. Am. Ceram. Soc., Vol. 86, pp. 1508-1512, 2003.
[17] http://www.twcat.edu.tw/webmaster/wwwfad/thesis/B2-04.pdf
[18] Kang Xue Ya, Wang Tian Diao, Han Yin, Tao Min De,“Sol-gel process doped ZnO nanopowders and their grain growth”Materials Research Bulletin, Vol. 32, pp. 1165-1171, 1997.
[19] Shenglin Jiang, Haibo Zhang, Yanqiu Huang, Meidong Liu, Ruzhan Lin,“Effect of annealing temperature of a novel Sol–gel process on the electrical properties of low voltage ZnO-based ceramic films” Materials Science and Engineering B, Vol. 117, pp. 317-320, 2005.
[20] Kang Xue Ya, Han Yin, Tao Ming De, Tu Ming Jing,“Analysis of ZnO varistors prepared from nanosize ZnO Precursors”Materials Research Bulletin, Vol. 33, pp. 1703-1708, 1998.
[21] S.C. Zhang, X.G. Li,“Preparation of ZnO particles by precipitation transformation method and its inherent formation mechanisms” Colloids Surf., A, Vol. 226, pp. 35-44, 2003.
[22] J.E. Rodrguez-paez, A.C. Caballero, M. Villegas, C. Moure, P. Duran, J.F. Fernandez,“Controlled precipitation methods:formation mechanism of ZnO nanoparticles”J. Eur. Ceram. Soc., Vol. 21, pp.925-930, 2001.
[23] Hui Zhang, Deren YangT, Shenzhong Li, Xiangyang Ma, Yujie Ji, Jin Xu, Duanlin Que,“Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process”Mater. Lett., Vol. 59, pp. 1696-1700, 2005
[24] Chung-Hsin Lu, Chi-Hsien Yeh“Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder”Ceram. Int., Vol. 26, pp. 351-357, 2000.
[25] M. Singhal, V. Chhabra P. Kang and D. O. Shah, “Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion”, Materials Research Bulletin, Vol. 32, pp. 239-247, 1997.
[26] B. P. Lim and J. Wang, S. C. Ng, C. H. Chew and L. M. Gan,“A Bicontinuous Microemulsion Route to Zinc Oxide Powder”, Ceramics international, Vol. 24 , pp. 205-209, 1998.
[27] A. Mosbah,T, A. Moustaghfir, S. Abedc, N. Bouhssira, M.S. Aida, E. Tomasella, M. Jacquet“Comparison of the structural and optical properties of zinc oxide thin films deposited by d.c. and r.f. sputtering and spray pyrolysis”Surf. Coat. Technol., Vol. 200, pp. 293-296, 2005.
[28] Malle Krunks, Enn Mellikov,“Zinc oxide thin films by the spray pyrolysis method”Thin Solid Films, Vol. 270, pp. 33-36, 1995.
[29] Xianhui Xia, Liping Zhu, Zhizhen Ye, Guodong Yuan, Binghui Zhao, Qing Qian,“Novel ZnO microballs synthesized via pyrolysis of zinc-acetate in oxygen atmosphere”J. Cryst. Growth, Vol. 282, pp. 506-512, 2005.
[30] Yuanhua Lin, Zilong Tang, and Zhongtai Zhang,“Preparation of Nanometer Zinc Oxide Powder by Plasma Pyrolysis Technology and Their Application”J. Am. Ceram. Soc, Vol. 83, pp. 2869-2871, 2000.
[31] C.C. Hwang, C.Y. Weng, W.C. Lee, S.L. Chung,“Synthesis of AlN Powder by a Combustion Synthesis Method”Intl. J. Self-Propagating High Temperature Syn., Vol. 6, pp. 419-429, 1997.
[32] http://www.msal.net/ZILIAO/yingyong4.htm
[33] C. Oommen, S.R. Jain,“Ammonium nitrate a promising rocket propellant oxidizer”Journal of Hazardous Materials, Vol. 67, pp. 253-281, 1999.
[34] S. Biamino, C. Banidi,“Combustion synthesis of lanthanum chromite starting from water solutions: Investigation of process mechanism by DTA–TGA–MS”J. Eur. Ceram. Soc., Vol. 24, pp. 3021-3034, 2004.
[35] R. Wu, C.S. Xie,“Formation of tetrapod ZnO nanowhiskers and its optical properties”Mater. Res. Bull., Vol. 39, pp. 637-645, 2004.
[36] S. Takeuchi, H. Iwanaga, M. Fujii,“Inter-leg angles in tetrapod ZnO particles”J. Cryst. Growth, Vol. 183, pp. 190-195, 1998.
[37] Q. Wan, K. Yu, T.H. Wang, C.L. Lin,“Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation”Appl. Phys. Lett., Vol. 83, pp. 2253-2255, 2003.
[38] Y.N. Zhao, M.S. Cao, J.G. Li, Y.J. Chen,“A general combustion approach to multipod ZnO and its characterization”J. Mater. Sci., Vol. 41, pp. 2243-2248, 2006.
[39] C.C. Hwang, T.Y. Wu,“Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method”Mater. Sci. Eng. B, Vol. 111, pp. 197-206, 2004.
[40] S. Ekambaram,“Combustion synthesis and characterization of new class of ZnO-based ceramic pigments”J. Alloy. Compd., Vol. 390, pp. L4-L6, 2005.
[41] J.G Zhou, Y.L. Wang, F.Y. Zhao, Y.L. Wang, Y. Zhang, L. Yang,“Photoluminescence of ZnO nanoparticles prepared by a novel gel-template combustion process”J. Luminescence, Vol. 119-120, pp. 248-252, 2006.
[42] Xiaoming Sun, Xing Chen, Yadong Li,“Evaporation growth of multipod ZnO whiskers assisted by a Cu2+ etching technique”Journal of Crystal Growth, Vol. 244, pp. 218-223, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top