跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃英甫
研究生(外文):Ing Fuu Huang
論文名稱:鋁合金鈍化膜綠色製程之研究
論文名稱(外文):A study of the Green Process of the chemical conversion coating on the aluminum alloy.
指導教授:葛明德葛明德引用關係
指導教授(外文):Ming-Der,Ger
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:71
中文關鍵詞:鋁合金鉻酸鹽轉化膜X光光電子能譜儀
外文關鍵詞:aluminum alloychromate conversion coatingXPS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:796
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討三價鉻錯合物的濃度與化成溫度在鋁合金表面形成鈍化皮膜性質的影響,藉由電化學方法、微結構的觀察及成份分析來探討鈍化皮膜在耐蝕機制的表現。三價鉻轉化膜主要使用六氟鋯酸鹽系統於鋁合金表面形成一層包含氧化鋁及鉻錯合物之轉化膜,其操作參數包括濃度、成膜溫度及成膜時間,觀察參數對三價鉻鈍化膜耐蝕性質的變化。在電化學量測方面,由電化學交流阻抗法(Electrochemical Impedance Spectroscopy, EIS)獲得鈍化膜成膜的阻抗,其各參數所獲得之鈍化膜表面形態及組成可藉由掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM)、二次離子質譜儀(Secondary Ion Mass Spectrometer, SIMS)及X光光電子能譜儀(X-ray Photoelectron Spectrometer, XPS)各別獲得求知。
實驗結果顯示,三價鉻與六氟鋯酸鹽在濃度比為1:1下,鈍化皮膜有較佳的耐腐蝕表現;在成膜溫度方面,在成膜溫度40℃下所得皮膜耐腐蝕表現優於60℃;在成膜時間方面,在成膜溫度40℃,成膜時間30秒時所生成鈍化皮膜可得到較佳阻抗值;經由低掠角X光繞射測試結果,發現鈍化皮膜的微結構以非晶的形態披覆在鋁合金基材表層。
在本研究中發現,硼酸根會抑制溶液中鋯元素與鉻元素沉積於鈍化皮膜裡,推測在整個皮膜當中,硼元素在基材界面處阻礙鉻元素和鋯元素的沉積;矽酸根會抑制溶液中鋯元素與鉻元素沉積於鈍化皮膜裡,且在鈍化皮膜中矽元素含量增加,推測矽酸根會沉積於皮膜中,且矽酸根不與三價鉻及六氟鋯酸根作鍵結。在鈍化皮膜中發現三價鉻是形成鈍化皮膜之主要關鍵,使得三價鉻錯合物在鋁合金基材表面形成鈍化皮膜。
Chromate Conversion Coatings (CCCs) on aluminum alloy were characterized using Electrochemical Impedance Spectroscopy (EIS), Scanning Electron Microsc- opey (SEM), X-ray Photoelectron Spectrometer (XPS) and X-Ray Diffractionary (XRD). Chromium conversion coating use hexafluorozirconate system to form conversion coating contain oxidize chromium and alumina on surface of aluminum alloy, it’s operate parameter contain both temperature and time of accomplish coat, observe the change of parameter to corrosion protection property of trivalent chromium. In measureing,it is obtained that impedance by Electrochemical Impedance Spectroscopy, it’s obtained that surface morphology of conversion coating and compose by Scanning Electron Microscopey, X-ray Photoelectron Spectrometer and X-Ray Diffractionary.
The result shows, it gets well conversion coatings with concentration of trivalent chromium and hexafluorozirconia on 1:1, coat temperature on 40 degree, coat time on 30 sec. In X-Ray Diffractionary, the structure of Chromate Conversion Coatings on aluminum alloy is amorphous situation.
In this study, boric acid and sodium silicate will hinder zirconium element and chromium element deposit on aluminum alloy, and the content of silicon increases among the film of passivation, suspect sodium silicate will deposit in the film, and it do not bounding with trivalent chromium and hexafluorozirconia. Trivalent chromium main key of film, which form trivalent chromium complex on the aluminium alloy.
致謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 vii
圖目錄 ix
1. 緒論 1
2. 文獻回顧及基礎理論 4
2.1 鋁合金的特性 4
2.2 鋁合金之表面處理 5
2.2.1 鋁合金之前處理 5
2.2.2 鋁合金之化成處理 6
2.2.3 鉻酸鹽的演進 14
2.2.4 綠色製程 16
3. 實驗方法 17
3.1 前處理與化成藥液配置 17
3.1.1 試片準備與前處理 17
3.1.2 鉻酸鹽化成液配置 20
3.2 化成處理 20
3.3 化成皮膜耐蝕性質量測 21
3.3.1 電化學交流阻抗法(EIS) 21
3.4 化成皮膜微結構分析 22
3.4.1 掃瞄式電子顯微鏡表面形貌觀察(SEM) 22
3.4.2 二次離子質譜儀(SIMS) 22
3.4.3 X光光電子能譜儀(XPS) 23
3.4.4低掠角X光繞射(XRD) 25
4. 實驗結果與討論 26
4.1鋁合金三價鉻鈍化藥液之建立 26
4.1.1探討添加劑對成膜之特性 26
4.1.2藉由X光光電子能譜圖探討四氟硼酸鈉及六氟矽酸鈉之影響 38
4.1.3三價鉻對鈍化皮膜之影響 42
4.2探討不同螯合劑濃度對鈍化皮膜之影響 44
4.3 探討不同成膜溫度對三價鉻鈍化膜之影響 50
4.3.1藉由電化學交流阻抗法分析皮膜之阻抗 50
4.3.2藉由表面形貌分析皮膜之特性 53
4.4探討不同成膜時間對三價鉻鈍化膜之影響 58
4.4.1由電化學交流阻抗法分析皮膜之阻抗 58
4.4.2藉由表面形貌分析皮膜之特性 61
4.5對三價鉻鈍化皮膜特性之分析 66
5. 結論 68
6.參考文獻 69
自傳 72
1.王建義,“鎂合金之環保化”,輕金屬特刊,第125-130頁,6月,2002年號。
2.劉檳,易茂中,“鑄造鋁合金化學轉化膜及其性能測試”,材料保護,33(9),第23~24頁,2000年。
3.機械工程手冊、電機工程手冊之編輯委員會,熱處理與表面處理-經密製造,第8篇,第1章,第3-8頁,2002年。
4.周淑金,“綠色表面處理-六價鉻替代技術的發展”,工業材料雜誌,239期,第118~119頁,11月,95年。
5.Directive 2002/96/ec of the european parliament and of the council of 27 January 2003, on waste electrical and electronic equipment (WEEE).
6.Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of-life vehicles,Official Journal of the European Communities L269 (21.10.2000).
7.Directive 2002/95/ec of the european parliament and of the council of 27 January 2003, on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
8.林晉平,“六價鉻替代方案-三價鉻電鍍之技術發展與市場現況”,工業材料雜誌,239期,第130~132頁,11月,95年。
9.李鑫慶,陳迪勤,余靜琴,“鋁及鋁合金化學轉化膜”,化學轉化膜技術與應用,第57頁,5月2005年。
10.Marcel Pourbaix,“Atlas of Electrochemical Equilibria in Aqueous Solutions, ” sec4.3, pp.171~172, 1974.
11.岳慎禮,啟學出版社,“鋁合金資料集”,第53~54頁,3月,73年。
12.Devicharan Chidambaram, Clive R. Clayton, Gary P. Halad, “The role of hexafluorozirconate in the formation of chromate conversion coatings on aluminum alloys, ” Electrochimica Acta, 51, 2006, pp.2862-2871.
13.E. Snyder (American Chemical Paint Co.), “Protection of certain nonferrous metal surfaces, ” US Patent No. 2,453,764, 1948.
14.C.W. Ostrander, N.R. Congiundi, “Composition and method for producing corrosion resistant protective coating on aluminum and aluminum alloys,” US Patent No. 2,796,370, 1957.
15.Materials Safety Data Sheet for Alodine 1200S, Parker-Amchem, HenkelCorporation Report, Parker-Amchem, Henkel Corporation.
16.Parker-Amchem, Henkel-Coroporation, “The role of fluoride compounds in the formation of chromate conversion coatings on aluminum alloys,” in Report.
17.Kelly, Timm L., “Developer compositions having electrically conducting filaments in carrier partivle matrix,” United States Patent 4,148,640, 1979.
18.Sander, et al., “Composition and method for non-chromate coating of aluminum,” United States Patent 4,921,552, 1990.
19.Metzdorf, et al., “Corrosion resistant coatings for aluminum and aluminum alloys,” United States Patent 6,375,726, 2002.
20.Tohnson, et al., “Faster two-step sealing of anodized aluminum surfaces,” United States Patent 6,447,665, 2003.
21.Matzdorf, et al., “Post-treatment for anodized aluminum,” United States Patent 6,511,532, 2003.
22.Matzdorf, et al., “Pretreatment for aluminum and aluminum alloys,” United States Patent 6,669,764, 2003.
23.Schneider; et al., “Improvement in the apparatus for relieving ships, cables from sudden and violent strain, which is also applicable to other purposes,” Schneider; et al., United States Patent 3,932, 1981.
24.Bishop; et al., “Coating solutions of trivalent chromium for coating zinc surfaces,” United States Patent 4,171,231, 1979.
25.Guhde; et al., “Coating solutions of trivalent chromium for coating zinc and cadmium surfaces,” United States Patent 4,263,059, 1981.
26.Crotty; David E., “Stabilized trivalent chromium passivate composition and process,” United States Patent 4,359,348, 1982.
27.Crotty , et al., “Trivalent chtomium passivate composition and process,” United States Patent 4,384,902, 1983.
28.Lash , et al., “Trivalent chtomium passivate process,” United States Patent 4,367,099, 1983,
29.Preikschat, “Chromate-free conversion layer and process for producing the same,” United States Patent 6,287,704, 2001.
30.Matzdorf; et al., United States Patent 6,663,700, 2003.
31.Oshima, et al., “Processing solution for forming hexavalent chromium free and corrosion resistant conversion,” United States Patent 20030148122, 2003.
32.Tang; et al., “Stability additive for trivalent chrome conversion coating bath solutions,” United States Patent 6,648,986, 2003.
33.Diaddario, Leonard L. JR.; et al., “Trivalent chromate conversion coating,” United States patent 20030145909,2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top