跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 18:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙鉅隆
研究生(外文):Chao,Chu-Lung
論文名稱:以鎳基合金鍍層進行鋁合金雙極板表面改質之研究
指導教授:葛明德葛明德引用關係
指導教授(外文):Ger,Ming-Der
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:80
中文關鍵詞:金屬雙極板動電位極化四點探針
外文關鍵詞:metal bipolar platespotentiodynamic polarizationfour point probe.
相關次數:
  • 被引用被引用:10
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池系統中,雙極板需具備良好的導電度及抗腐蝕性外,還須具有足夠
強度,以目前欲商用之雙極板來說,更須減輕重量和降低成本,因此金屬製作而
成之雙極板便成為發展之主題。
本實驗目的係以鋁合金雙極板表面改質做為研究重點。鋁合金雙極板表面改
質主要以無電電鍍法(Electroless Deposition)在鋁合金的表面沉積鎳基合金金屬薄
膜,由於鎳基合金鍍層具有優越的耐蝕性質與良好的導電能力。此外,含耐火元
素的鎳基合金,具有不易溶於酸性溶液及良好的熱穩定性等優點,因此,將鎳基
合金應用於鋁合金雙極板上應具有不錯之潛能。
本實驗以溫度、鍍液酸鹼值(pH)與鉬(或鎢)含量作為操作參數,製備鎳磷、
鎳鎢磷及鎳鉬磷合金,探討三者金屬鍍層特性與抗蝕性。所得鍍層除了以X光繞
射圖(XRD)與掃描式電子顯微鏡(FE-SEM)分析鍍層結構與表面形貌外,並利用電
化學動電位極化測試、感應耦合電漿原子發散光譜儀(ICP-OES)與四點探針
(Four-point probe),分析不同操作條件下鍍層成分變化、抗腐蝕性能及電阻值之
差異。實驗結果顯示,鉬元素濃度為15 g/L濃度過高,會使鎳鉬磷鍍層表面應力
過大,而使鍍層產生龜裂現象,腐蝕性物質容易經由龜裂處侵蝕底部基材,所以
抗蝕性差。而鎳鉬磷合金在濃度為10 g/L,pH7時,抗蝕性最佳,具有好的熱穩定
性,導電性佳,附著力良好,且在不同腐蝕環境中其抗腐蝕性亦優異,尤其經過
長時間浸泡在酸性溶液中,抗蝕性表現較鎳磷及鎳鎢磷合金好,因此,由結果顯
示,鎳鉬磷合金最適合應用在金屬雙極板。
In the fuel cell system, the bipolar plates needs to possess good electrical conductivity, excellent corrosion resistance, and superior mechanical strength. For the present commercialization, the weight and the manufacturing cost of bipolar plates must be reduced. Therefore, the fabrication of bipolar plates using metals has been
the developing subject. The object of this work is to modify the surface characteristics of Al-alloys used as bipolar plates. The Ni-based alloy coatings were deposited on the Al-alloy substrate to improve its surface characteristics by an electroless deposition process. The Ni-based alloys have excellent corrosion resistance and good electrical conductivity. Moreover, the Ni-based deposits lloying
with refraetory metals would be more difficulty to dissolve in a dilute acidic solution,and may hold superior thermal stability. Therefore, the Ni-based alloys have a potential to produce as a coating of Al-based alloys for the application of bipolar plates.
The depositing temperature, pH values of depositing solution, and the concentration of Mo or W in the electrolytes were used as controlling parameters in this experiment. The Ni-P, Ni-W-P, and Ni-Mo-P alloys were produced under different operating conditions, and the properties and the corrosion resistance of the three deposits are investigated. The X-ray diffraction (XRD) and the scanning electron microscopy (SEM) were employed to analyze the structure and surface morphologies of the deposits. Additionally, the potentiodynamic polarization, the induced couple plasma-optical emission spectroscopy (ICP-OES), and the four point probe system were used to examine the composition, the corrosion resistance, and the electrical resistivity of these deposits prepared under different operating conditions.
The experimental results show that the surface of Ni-Mo-P deposits, prepared in the electrolyte with 15 g/L sodium molybdate, exhibits many cracks. These cracks are induced by the stress release due to the deposit containing excesses of Mo. The corrosion media would attack the substrate through cracks of this Ni-Mo-P deposit.
The corrosion resistance of the Ni-Mo-P deposit prepared under such conditions,therefore, is inferior. When the contents of Na2MoO4 was 10 g/L at the pH values of 7 in the depositing solution, the Ni-Mo-P deposit would hold the most outstanding corrosion resistance, thermal stability, electrical conductivity, and bonding to
substrates among all Ni-based coatings. Furthermore, the corrosion resistence of the Ni-Mo-P deposit is better than that of the Ni-P and Ni-W-P deposits in different corrosion environments or undergoing a long-term soaking in an acidic solution.
Based on the experimental results the Ni-Mo-P deposits are the most suitable to use in the coatings of the Al-alloy bipolar plate.
誌謝...............................................................................................................................ii
摘要..............................................................................................................................iii
ABSTRACT ................................................................................................................. iv
目錄..............................................................................................................................vi
表目錄.......................................................................................................................... ix
圖目錄........................................................................................................................... x
1. 緒論.......................................................................................................................... 1
1.1 研究背景................................................................................................................ 1
1.2 研究目的................................................................................................................ 2
2. 文獻回顧與理論基礎.............................................................................................. 6
2.1 燃料電池原理與種類............................................................................................ 6
2.2 燃料電池組成元件.............................................................................................. 14
2.3 燃料電池雙極板.................................................................................................. 17
2.4 金屬膜沉積技術................................................................................................... 19
2.4.1 物理氣相沉積法(Physical Vapor Deposition, PVD)................................. 20
2.4.2 有機金屬化學氣相沉積法(Metal-organic Chemical Vapor Deposition,
MO-CVD)............................................................................................................ 20
2.4.3 電化學沉積法(電鍍法,electroplating) ................................................... 20
2.4.4 電化學沉積法(無電鍍法,electroless plating) ........................................ 21
2.5 腐蝕機構原理....................................................................................................... 22
3. 實驗方法................................................................................................................ 27
3.1 實驗流程圖.......................................................................................................... 27
3.2 鍍液組成.............................................................................................................. 27
3.2.1 鎳磷鍍液.................................................................................................... 28
3.2.2 鎳鎢磷鍍液................................................................................................ 28
3.2.3 鎳鉬磷鍍液................................................................................................ 29
3.3 實驗樣品製作...................................................................................................... 29
3.3.1 基材與Zn 置換活化前處理...................................................................... 29
3.3.2 無電鍍鎳基合金........................................................................................ 30
3.4 分析與檢測.......................................................................................................... 30
3.4.1 鍍層結構與組成分析............................................................................... 30
3.4.2 鍍膜熱循環法測試................................................................................... 31
3.4.3 電化學分析............................................................................................... 31
3.4.4 電阻值量測............................................................................................... 31
4. 結果與討論............................................................................................................ 32
4.1 鎳磷合金金屬雙極板之鍍層特性分析............................................................... 32
4.2 鎳鎢磷合金金屬雙極板之鍍層結構與抗蝕性分析........................................... 34
4.2.1 鎢磷酸濃度對鎳鎢磷鍍層結構與抗蝕性之影響.................................... 34
4.2.2 pH 值對鎳鎢磷鍍層結構與抗蝕性之影響.............................................. 38
4.2.3 析鍍溫度對鎳鎢磷鍍層結構與抗蝕性之影響........................................ 42
4.2.4 析鍍時間對鎳鎢磷鍍層抗蝕性之影響.................................................... 46
4.3 鎳鉬磷合金金屬雙極板之鍍層結構與抗蝕性分析........................................... 47
4.3.1 鉬酸鈉濃度對鎳鉬磷鍍層結構與抗蝕性之影響.................................... 47
4.3.2 pH 值對鎳鉬磷鍍層結構與抗蝕性之影響.............................................. 52
4.3.3 溫度對鎳鉬磷鍍層結構與抗蝕性之影響................................................ 56
4.3.4 析鍍時間對鎳鉬磷鍍層抗蝕性之影響.................................................... 60
4.4 鎳基合金鍍層之熱穩定性對抗蝕性影響.......................................................... 61
4.5 鎳基合金鍍層附著力及導電率量測................................................................... 65
4.6 鋁合金雙極板電化學耐蝕性能測試................................................................... 66
4.6.1 相近厚度下不同鎳基合金金屬雙極板之抗蝕性分析............................ 66
4.6.2 不同鎳基合金金屬雙極板在不同腐蝕環境下抗蝕性分析.................... 69
4.6.3 不同鎳基合金金屬雙極板經長時間浸泡後腐蝕阻抗分析.................... 72
第5 章 結論............................................................................................................... 74
參考文獻..................................................................................................................... 76
自傳............................................................................................................................. 80
表目錄
表1.1 國內外金屬雙極板製程分析比較表................................................................3
表1.2 現今各類金屬雙極板表面改質之材料............................................................4
表1.3 石墨與鋁合金金屬雙極板之分析比較............................................................4
表1.4 各種商用金屬腐蝕速率資料表........................................................................4
表1.5 各種商用金屬電阻率資料表............................................................................5
表2.1 各種燃料電池比較表........................................................................................8
表3.1 操作參數..........................................................................................................30
表4.1 不同濃度鎳鎢磷金屬雙極板比較表..............................................................38
表4.2 不同酸鹼值鎳鎢磷金屬雙極板成分比較表..................................................42
表4.3 不同析鍍時間鎳鎢磷金屬雙極板抗蝕性比較表..........................................46
表4.4 不同濃度鎳鉬磷金屬雙極板比較表..............................................................52
表4.5 不同酸鹼值鎳鉬磷金屬雙極板成分比較表..................................................56
表4.6 不同析鍍時間鎳鉬磷金屬雙極板抗蝕性比較表..........................................60
表4.7 不同鎳基合金熱穩定性及退火前後抗蝕性比較表......................................62
表4.8 不同鍍層之導電度比較表..............................................................................65
表4.9 不同鍍層之附著力測試比較表......................................................................66
表4.10 不同鎳基合金金屬雙極板之腐蝕速率比較表............................................69
表4.11 不同鎳基合金金屬雙極板於不同腐蝕環境之腐蝕電流比較表................72
表4.12 不同鎳基合金金屬雙極板經長時間浸泡0.5 M 硫酸後之腐蝕速率比較表
.............................................................................................................................72
x
圖目錄
圖2.1 為氫氣-氧氣燃料電池反應圖.....................................................................10
圖2.2 放熱反應位能圖............................................................................................. 11
圖2.3 各種燃料電池之基本反應圖......................................................................... 11
圖2.4 PEMFC 原理及構造圖................................................................................14
圖2.5 PEMFC 單電池串聯成電池堆示意圖........................................................15
圖2.6 高分子電解質膜微構造.................................................................................16
圖2.7 由電化學電池造成腐蝕之反應模式.............................................................25
圖2.8 極化曲線圖.....................................................................................................25
圖2.9 鈍態金屬之陽極極化曲線.............................................................................26
圗4.1 鎳磷合金之SEM 表面型態影像圖,10000 X..............................................33
圗4.2 鎳磷合金之XRD 繞射圖..............................................................................33
圖4.3 不同濃度鎳鎢磷金屬雙極板之SEM 表面型態影像圖,pH 值為9,操作溫
度為70℃,析鍍時間1 小時,1000 X;(A)鎢元素濃度5 g/L,(B)鎢元素濃
度10 g/L,(C)鎢元素濃度15 g/L ....................................................................34
圖4.4 不同濃度鎳鎢磷金屬雙極板之SEM 截面影像圖,pH 值為9,操作溫度為
70℃,析鍍時間1 小時,1000 X;(A)鎢元素濃度5 g/L,(B)鎢元素濃度10 g/L,
(C)鎢元素濃度15 g/L ........................................................................................36
圖4.5 不同濃度鎳鎢磷金屬雙極板之極化曲線圖,pH 值為9,操作溫度為70℃,析鍍
時間1 小時,(A)鎢元素濃度5 g/L,(B)鎢元素濃度10 g/L,(C)鎢元素濃度15 g/L
.............................................................................................................................37
圖4.6 不同酸鹼值之鎳鎢磷金屬雙極板之SEM 表面型態影像圖,鎢元素濃度10
xi
g/L,操作溫度為70℃,析鍍時間1 小時,5000 X;(A)pH 值為9 (B)pH 值
為8,(C)pH 值為7............................................................................................39
圖4.7 不同酸鹼值之鎳鎢磷金屬雙極板之XRD 繞射圖,鎢元素濃度10 g/L,操
作溫度為70℃,析鍍時間1 小時,(A)pH 值為7,(B)pH 值為8,(C)pH 值
為9 ......................................................................................................................40
圖4.8 不同酸鹼值之鎳鎢磷金屬雙極板之極化曲線圖,鉬元素濃度10 g/L,操作
溫度為70℃,析鍍時間1 小時;(A)pH 值為9,(B)pH 值為8,(C)pH 值為
7 ...........................................................................................................................42
圖4.9 不同溫度之鎳鎢磷金屬雙極板SEM 表面型態影像圖,鎢元素濃度10
g/L,鍍液酸鹼值7,析鍍時間1 小時,10000 X;(A) 70℃鎳鎢磷合金,(B)
80℃鎳鎢磷合金.................................................................................................43
圖4.10 鎳鎢磷金屬雙極板XRD 繞射圖,鉬元素濃度10 g/L,鍍液酸鹼值7,析
鍍時間1 小時,(A) 70℃鎳鎢磷合金,(B) 80℃鎳鎢磷合金........................44
圖4.11 不同溫度之鎳鎢磷金屬雙極板極化曲線圖,鎢元素濃度10 g/L,鍍液酸
鹼值7,析鍍時間1 小時,(A) 70℃鎳鎢磷合金,(B) 80℃鎳鎢磷合金.....45
圖4.12 不同析鍍時間之鎳鎢磷金屬雙極板極化曲線圖,鎢元素濃度10 g/L,鍍
液酸鹼值7,析鍍溫度70℃,(A)析鍍時間1 小時,(B)析鍍時間2 小時..46
圖4.13 不同濃度鎳鉬磷金屬雙極板之SEM 表面型態影像圖,pH 值為9,操作
溫度為70℃,析鍍時間1 小時,2000 X;(A)鉬元素濃度5 g/L,(B)鉬元素
濃度10 g/L,(C) 鉬元素濃度15 g/L...............................................................48
圖4.14 不同濃度鎳鉬磷金屬雙極板之SEM 截面影像圖,pH 值為9,操作溫度
為70℃,析鍍時間1 小時,2000 X;(A)鉬元素濃度5 g/L,(B)鉬元素濃度
xii
10 g/L,(C)鉬元素濃度15 g/L .........................................................................49
圖4.15 不同濃度鎳鉬磷金屬雙極板之C.V 圖,pH 值為9,操作溫度為70℃,
析鍍時間1 小時(a)鉬元素濃度0 g/L (b)鉬元素濃度5 g/L,(c)鉬元素濃度10
g/L,(d)鉬元素濃度15 g/L ...............................................................................51
圖4.16 不同濃度鎳鉬磷金屬雙極板之極化曲線圖,pH 值為9,操作溫度為70℃,析
鍍時間1 小時(a)鉬元素濃度5 g/L,(b)鉬元素濃度10 g/L,(c)鉬元素濃度15 g/L51
圖4.17 不同酸鹼值之鎳鉬磷金屬雙極板之SEM 表面型態影像圖,鉬元素濃度
10 g/L,操作溫度70℃,析鍍時間1 小時,5000 X;(A)pH 值為9,(B)pH
值為8,(C)pH 值為7........................................................................................53
圖4.18 不同酸鹼值之鎳鉬磷金屬雙極板之XRD 繞射圖,鉬元素濃度10 g/L,
操作溫度為70℃,析鍍時間1 小時;(A)pH 值為9,(B)pH 值為8,(C)pH
值為7 ..................................................................................................................54
圖4.19 不同酸鹼值之鎳鉬磷金屬雙極板之極化曲線圖,鉬元素濃度10 g/L,操
作溫度為70℃,析鍍時間1 小時;(A)pH 值為9,(B)pH 值為8,(C)pH 值
為7 ......................................................................................................................56
圖4.20 不同溫度之鎳鉬磷金屬雙極板SEM 表面型態影像圖,鉬元素濃度10
g/L,鍍液酸鹼值7,析鍍時間1 小時,10000 X;(A) 70℃鎳鉬磷合金,(B)
80℃鎳鉬磷合金.................................................................................................57
圖4.21 鎳鉬磷金屬雙極板XRD 繞射圖,鉬元素濃度10 g/L,鍍液酸鹼值7,析
鍍時間1 小時,(A) 70℃鎳鉬磷合金,(B) 80℃鎳鉬磷合金........................58
圖4.22 不同溫度之鎳鉬磷金屬雙極板極化曲線圖,鉬元素濃度10 g/L,鍍液酸
鹼值7,析鍍時間1 小時,(A) 70℃鎳鉬磷合金,(B) 80℃鎳鉬磷合金.....59
xiii
圖4.23 不同析鍍時間之鎳鉬磷金屬雙極板極化曲線圖,鉬元素濃度10 g/L,鍍
液酸鹼值7,析鍍溫度70℃,(A)析鍍時間1 小時,(B)析鍍時間2 小時..60
圖4.24 鎳磷合金經400℃退火處理前後之XRD 繞射圖.....................................62
圖4.25 鎳鉬磷合金經400℃退火處理前後之XRD 繞射圖.................................63
圖4.26 鎳鉬磷合金經400℃退火處理前後之XRD 繞射圖.................................63
圖4.27 鎳基合金經400℃退火處理前之極化曲線圖(A)鎳磷合金,(B)鎳鉬磷合
金,(C)鎳鎢磷合金............................................................................................64
圖4.28 鎳基合金經400℃退火處理後之極化曲線圖(A)鎳磷合金,(B)鎳鉬磷合
金,(C)鎳鎢磷合金............................................................................................64
圖4.29 相近膜厚之鎳基金屬雙極板SEM 截面影像圖 (A)鎳磷合金,(B)鎳鉬磷
合金,(C)鎳鎢磷合金........................................................................................67
圖4.30 相近膜厚之鎳基金屬雙極板之極化曲線圖(A) 鎳磷合金,(B)鎳鉬磷合
金,(C)鎳鎢磷合金,(D)原始鋁合金..............................................................69
圖4.31 不同鎳基合金金屬雙極板於3.5%鹽水中之極化曲線比較圖.................70
圖4.32 不同鎳基合金金屬雙極板於0.5 M 硫酸中之極化曲線圖.......................71
圖4.33 不同鎳基合金金屬雙極板於0.5 M 硫酸加10 ppm HF 中之極化曲線圖
.............................................................................................................................71
圖4.34 鎳基金屬雙極板浸泡在0.5 M 硫酸20 小時後之極化曲線圖 (A) 鎳磷合
金,(B)鎳鉬磷合金,(C)鎳鎢磷合金..............................................................73
圖4.35 鎳基金屬雙極板浸泡在0.5 M 硫酸40 小時後之極化曲線圖 (A) 鎳磷合
金,(B)鎳鉬磷合金,(C)鎳鎢磷合金..............................................................73
參考文獻
[1] A. Hermann, T. Chaudhuri and P. Spagnol, “Bipolar plates for PEM fuel cells:
A review ”, International Journal of Hydrogen Energy,Vol.30, pp.1297-1302.
2005.
[2] M.C. Kimble, A.S. Woodman and E.B. Anderson, “Characterization of
Corrosion-Protective Methods for Electrically Conductive Coatings on
Aluminum ” Physical Sciences Inc., Andover, MA, pp.299-310 ,1999.
[3] 陳皇任,“結合反應氣體流道與冷卻流道之PEMFC 雙極板的研製” ,私立
大葉大學,機械工程系研究所碩士論文,2005。
[4] J. H. Lee and T.R. Lalk, “Modelling fuel cell stack systems”, J. Power Sources,
Vol.73, pp.229-241,1998.
[5] S.J. Lee, “Effect of nafion impregnation on performance of PEMFC
electrodes”, Electrochimica Acta, Vol.43, pp.3693-3701 ,1998.
[6] N. Petrov, Y. Sverdlov, Y. Shacham-Diamand, “Electrochemical study of the
electroless deposition of Co(P) and Co(W, P) alloys ”,Journal of The
Electrochemical Society,Vol.149,4(C187-C194),2002.
[7] 陳士堃,“以化學氣相沉積法製備碳鍍層及其在燃料電池金屬雙極板之應
用” ,私立逢甲大學,材料科學與工程學系研究所碩士論文,2005。
[8] 陳慕辰,“直接甲醇燃料電池陰陽兩極之阻抗分析” ,國立成功大學,化學
工程系研究所碩士論文,2004。
[9] 何政儒, “高性能低成本非均質雙極板之研製與應用在PEMFC 之性能分
析” ,國立中山大學,機械與機電工程系研究所碩士論文,2004。
[10] M.H. Oh, Y.S. Yoon and S.G. Park, “The electrical and physical properties of
77
alternative material bipolar plate for PEM fuel cell system,” Electrochemical
Acta, Vol.50, pp.777-780 ,2004.
[11] E.A. Cho, U.S. Jeon, H.Y. Ha, S.A. Hong and I.H. Oh, “Characteristics of
composite bipolar plates for polymer electrolyte membrane fuel cells,” Journal
of Power Sources, Vol.125, pp.178-182 ,2004.
[12] 陳科宏,陳世朋,馬振基,關旭強,吳漢朗, “燃料電池雙極板之製程及
其性質之研究” ,中華民國高分子學會第二十六屆高分子研討會,2005。
[13] S. J. Lee, C. H. Huang, Y. P. Chen, “Corrosion-resistant component for PEM
fuel cells”,Journal of power Sources, Vol.131, pp.162-168 ,2004.
[14] M.D. Ger, Y. Sung, J.L. Ou, “A novel process of electroless Ni–P plating by
nonisotherma lmethod”, Materials Chemistry and Physics, Vol.89, pp.383-389,
2005.
[15] I.Bar-on, R. Kirchain, R. roth, “Technical cost analysis for PEM fuel cells”,J.
Power Sources, Vol.109, pp.71-75 ,2002.
[16] S. J. Lee, C. H. Huang, Y. P. Chen, “Corrosion-resistant component for PEM
fuel cells” , Journal of Materials ProcessingTechnology,Vol.140,
pp.688-693 ,2003.
[17] A. Kumara, R. G. Reddya, “Materials and design development for bipolar/end
plates in fuel cells”, J. Power Sources, Vol.129, pp.62-67 ,2004.
[18] R. C. Makkus, A. H.H. Janssen, F. A. de Bruijn, R. K.A.M. Mallant, “Use of
stainless steel for cost competitive bipolar plates in the SPFC”,J. Power
Sources, Vol.86, pp.274-282 ,2000.
[19] D.P. Davies, P.L. Adcock, M. Turpin, S.J. Rowen, “Stainless steel as a bipolar
plate material for solid polymer fuel cells”, J. Power Sources,Vol.86,
pp.237-242 ,2000.
78
[20] 周育賢,“非均溫化學鍍鎳及同在微結構製作之應用”,碩士論文,國防大
學中正理工學院,應用化學研究所,桃園,2004。
[21] 王崇安,“非均溫化學鍍鎳基合金奈米阻障層之製備”,碩士論文,國防大
學中正理工學院,應用化學研究所,桃園,2006。
[22] Solartron Instruments a division of Solartron Group Ltd, “Understanding
Electrochemical Cells, Technical Report 17”, pp.12-15 ,1997.
[23] 賴建璋,“電化學拋光機制與表面品質改善研究”,博士論文,私立元智大
學,機械工程研究所,桃園,2006。
[24] 黃敬涵,“燃料電池金屬雙極板研究”,碩士論文,私立元智大學,機械工
程研究所,桃園,2004。
[25] S.K. Tien, J.G. Duh, and Y.I. Chen, “Structure, thermal stability and mechanical
properties of electroless Ni–P–W alloy coatings during cycle test”,Surf. &
Coat. Techn. Vol. 177-178 pp.532-536 ,2004.
[26] S.K. Tien and J.G. Duh, “Thermal reliability of electroless Ni–P–W coating
during the aging treatment”,Thin Solid Films, Vol. 469-470 pp.268-273 ,2004.
[27] Y. Zhanq, J. Ma, Y.K. Fanq, and J.G. Duan, “Creep behavior and threshold
stress of an extruded Al-6Mg-2Sc-1Zr alloy”, Materials Science and
Engineering, Vol.A 381 pp.381-385 ,2004.
[28] Y. Gao, Z.J. Zheng, M. Zhu, and C.P. Luo, “Corrosion resistance of
electrolessly deposited Ni–P and Ni–W–P alloys with various
structures” ,Mate. Sci. & Engi. A, Vol. 381 ,pp.98-103 ,2004.
[29] S. J. Lee, C. H. Huang, J. J. Lai, “Stainless steel bipolar plates”, J. Power
Sources. Vol. 145 ,pp.362-368 ,2005.
[30] 林敬二,楊美惠,楊寶旺,廖德章,薛敬和,“化學大辭典修訂版” ,高立
圖書有限公司,p1018,p1049,p1609-1610.
[31] W.Y. Chen and J.G. Duh, “Thermal stability of sputtered Ni–P and Ni–P–Cr
coatings during cycling test and annealing treatment” ,Surf. & Coat. Tech. Vol.
177-178 ,pp.222-226 ,2004.
[32] 林明輝,“熱循環對碳纖維強化銅基複合材料所造成之影響” ,碩士論文,
國立中山大學,材料工程研究所,高雄,2000。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top