跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 12:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:童偉殷
研究生(外文):Tong. wei-yin
論文名稱:陶瓷氧化物系強磁體掺和高介電材料之合成及其電磁特性研究
論文名稱(外文):Synthsis and characterization of Ceramic Oxide of high magmetism dopeing high permittinity material and electromagnetism properties
指導教授:黃其清
指導教授(外文):Hwang C. C.
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:88
中文關鍵詞:陶瓷氧化物鐵氧磁體
外文關鍵詞:ferrite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試以燃燒合成法製備奈米級SrFe12O19及SrTiO3微粉,利用金屬硝酸鹽(nitrate)及氨基乙酸(glycine)為反應物,藉由調整兩者計量比與反應混合物之氧氣平衡值以觀察其燃燒現象,並獲得不同特性之初得產物。初得產物經不同溫度熱處理後,以X光繞射判定其晶相發現,初得產物經 ≧ 900℃熱處理一小時後可獲得接近單晶SrFe12O19,而在相同OB值下,經燃燒反應後不需熱處理即可得SrTiO3單晶;為何鈣鈦礦結構SrTiO3之生成較M型六方晶SrFe12O19迅速之相關實驗結果及原因將於文中詳細說明。
另為探討高介電材料對陶瓷氧化物之電磁特性影響,進一步以燃燒合成法製備添加莫耳比0.00-0.15高介電材料鈦酸鍶(SrTiO3,以下稱STO)之強磁性M型鍶鐵氧體(Sr Fe12O1 9,以下稱SrM)並探討STO添加物於相對導磁率、介電常數及1 MHz-1.8 GHz之微波吸收行為的影響。由XRD分析可知,初得產物中含副產物SrCO3與 Fe2O3及預期中之SrM與STO產物。之後,經熱處理後所獲得之產物即以SrM與STO組成。於SrM中添加STO不僅可改善其 ,亦可修正其 。此外,我們發現STO含量增加則其產物具有較寬之反射特性,但其吸收效果呈現遞減趨勢。

關鍵詞:燃燒合成;氧氣平衡值;硝酸鹽;氨基乙酸;鍶鐵氧體;鈦酸鍶;相對導磁率;相對介電常數
In this study, nanopowders of SrFe12O19 and SrTiO3 were tried to prepare by a combustion synthesis method using metallic nitrates and glycine as reactants. By adjusting the glycine-to-nitrates ratio, the oxygen balance (OB) values of the reactant mixtures can be varied in which the combustion phenomena is altered and thereby the as-synthesized products with different characteristics are obtained. Development of crystalline phases in the as-synthesized powders after heat-treatments at various temperatures was monitored by X-ray diffraction. Nearly single-phased SrFe12O19 could be obtained after calcination of the as-synthesized Sr-ferrite powder at a temperature ≧ 900℃ for 1 h, whereas single-phased SrTiO3 could be formed directly after the combustion reaction without calcination at the same OB value. Associated with he experimental results, possible reasons were proposed to explain why the formation of perovkskite-structured SrTiO3 was more readily than that of M-type SrFe12O19 belonging to hexagonal crystal system.
On the other hand, the hard-magnet of M-type strontium ferrite (SrFe12O19, abbreviated as Sr-M) incorporated with the high-dielectric material of strontium tiatanate (SrTiO3, shortened to STO) in the range of 0.00-0.15 molar ratio was prepared simultaneously in one step by using the combustion method performed in our previous study. The effects of SrTiO3 additive on the relative complex permittivity ( ), permeability ( ) and the behavior of microwave absorption in the frequency range of 1 MHz-1.8 GHz have been investigated. Judging from the XRD analysis, it is revealed that the products as-synthesized contained the by-products of SrCO3 and Fe2O3 in addition to the excepted phases of M-Sr and STO. However, the calcined and even the sintered products were the simple composites composed of M-Sr and STO. Adding more STO to M-Sr was demonstrated not only to improve the but also to modify the . Besides, it was found that the reflection band became broader and shifted to lower frequency with increasing STO content, but the absorption efficiency [i.e., the minimum point of dB attained] was degraded gradually.

Keywords:Combustion synthesis; Oxygen balance; Nitrates; Glycine; SrFe12O19; SrTiO3; Complex permittivity; Complex permeability
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 viii
圖目錄 ix
1. 緒論 1
1.1 陶瓷氧化物 1
1.2 研究動機 3
1.3 電磁波吸收原理 4
2. 文獻回顧和研究動機 8
2.1 文獻回顧 8
2.2 鐵氧體 8
2.3 陶瓷氧化物粉末合成方法 12
2.4 燃燒合成法簡介 16
3. 實驗 17
3.1 藥品 17
3.2 分析儀器設備 17
3.3 儀器分析、檢測 18
3.4製備鍶鐵氧磁體(SrFe12O19) 20
3.5製備鈦酸鍶(SrTiO3) 21
3.6 製備含鈦酸鍶之鍶鐵氧體(SrFe12O19+ηSrTiO3) 22
3.7 試片的製作 23
4. 結果與討論 26
4.1 SrFe12O19之製備 26
4.1.1 燃燒反應之性質(SrFe12O19) 26
4.1.2 初得產物(SrFe12O19)之特性分析 35
4.1.2.1 相組成 35
4.1.2.2 形態特徵 37
4.1.2.3 電磁特性 45
4.2 SrTiO3之製備 50
4.2.1 燃燒反應之性質(SrTiO3) 50
4.2.2 初得產物(SrTiO3)之特性分析 53
4.3 SrFe12O19 +ηSrTiO3之製備 59
4.3.1 相組成及形態觀察 59
4.4 電磁特性量測 63
4.4.1 相對介電常數 63
4.4.2 相對導磁率 65
4.5 微波吸收特性 69
5 結論 70
參考文獻 72
論文發表 76
自傳 77
[1] 汪建民,粉末冶金技術手冊,粉末冶金協會,新竹縣,1999年。
[2] 山口 喬,柳田博明,岡本祥一,近桂一郎,磁性陶瓷,復漢出版社,台南市,1986年。
[3] 張洋舜,“微波吸收材料發展簡介”,新新雙月刊,第21卷,第4期,第46-50頁,1993年。
[4] 夏宏中,“隱形技術在武器載具之應用探討”,新新季刊,第29卷,第4期,第139-142頁,2001年。
[5] 汪建民,陶瓷技術手冊,粉末冶金協會,新竹縣,1999年。
[6] 賴元泰,“電磁波吸收材質之研究”,碩士論文,中原大學,桃園,2002。
[7] 刑麗英,隱身材料,化學工業出版社,北京,2004年。
[8] W.-H., Lin, S.-K., and Jang Jean, C-S., Hwang, “Phase formation and composition of Mn-Zn ferrite powders prepared by hydrothermal method,” J. Mater. Res., Vol. 14, pp.204-208, 1999.
[9] J. Schafer, W. Sigmund, S. Roy, and F. Aldinger, “Low temperature synthesis of ultrafine Pb(Zr,Ti)O3 powder by sol-gel combustion, ” J. Mater. Res., vol.12, pp. 2518-2521, 2000.
[10] H. Kojima, Fundamental Properties of Hexagonal Ferrites with Magnetoplumbite Structure; Ch. 5, pp. 305-391 in Ferromagnetic Materials: A Handbook on the properties of Magnetically Ordered Substances, Vol. 3. Edited by E.P. Wohlfarth.
[11] K. Handea, C. Miyakawa, K. Goto, “Preparation of small particles of SrFe12O19 with high coercivity by hydrolysis of metal-organic complexes,” IEEE Trans. Magn. Mag,. Vol. 23, pp. 3134-3136, 1987.
[12] G. Elwin, I.P. Parkin, Q.T. Bui, L. Fernández Barquín, Q.A. Pankhurst, A.V. Komarov, Y.G. Morozov, “Self-propagating high-temperature synthesis of SrFe12O19 from reaction of strontium superoxide, iron metal and iron oxide powders,” J. Mater. Sci. Lett., Vol. 16, pp. 1237-1239, 1997.
[13] J. Fang, J. Wang, L.-M. Gan, S.-C. Ng, J. Ding, Liu. X., “Fine strontium ferrite powders from an ethanol-based microemulsion,” J. Am. Ceram. Soc., Vol. 83. pp. 1049-1055, 2000.
[14] L.A. García-Cerda, O.S. Rodríguez-Fernández, P.J. Reséndiz-Hernández, “Study of SrFe12O19 synthesized by the sol-gel method,” J. Alloy. Compd., Vol. 369, pp. 182-184, 2004.
[15] Y.P. Fu, C.H. Lin, “Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwaved-induced combustion process,” J. Alloy. Compd., Vol. 386, pp. 222-227, 2005.
[16] P.-H. Martha, “Microwave applications of soft ferrites,” J. Magn. Magn. Mater., Vol. 215, pp. 171-183, 2000.
[17] P. Hernández, C. de Francisco, J. M. Munoz, J. Iniguez, L. Torres, M. Zazo, “Influence of sintering atmosphere on the magnetic after-effect in strontium ferrites,” J. Magn. Magn. Mater., Vol. 157/158, pp. 123-124, 1996.
[18] P. Huang, L.J. Deng, J.X. Xie, D.F. Liang, L. Cheng, “Effect of BST additive on the complex permeability and permittivity of Z-type hexaferrite in the range of 1 MHz-1 GHz,” J. Magn. Magn. Mater., Vol. 271, pp. 97-102, 2004.
[19] S. Kulkarni, J. Shrotri, C.E. Deshpande, S.K. Date, “Synthesis of chemically coprecipitated hexagonal strontium-ferrite and its characterization,” J. Mater. Sci., Vol. 24, pp. 3739-3744, 1989.
[20] V.V. Pankov, M. Pernet, P. Germi, P. Mollard, “Fine hexaferrite particles for perpendicular recording prepared by the coprecipitation method in the presence of an inert component,” J. Magn. Magn. Mater., Vol. 120, pp. 69-72, 1993.
[21] A. Ataie, S. Heshmati-Manesh, “Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method,” J. Eur. Ceram. Soc., Vol. 21, pp. 1951, 2001.
[22] A. Ataie, I.R. Harris, C.B. Ponton, “Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions,” J. Mater. Sci., Vol. 30, pp. 1429, 1995.
[23] C. Sürig, K.A. Hempel, D. Bonnenberg, “Formation and microwave absorption of barium and strontium ferrite prepared by sol-gel technique,” Appl. Phys. Lett., Vol. 63, pp. 2836-2838, 1993.
[24] J.-H. Choy, Y.-S. Han, S.-W. Song, “Preparation and magnetic properties of ultrafine SrFe12O19 particles derived from a metal citrate complex,” Mater. Lett., Vol. 19, pp. 257-262, 1994.
[25] Yue, Z., Li, L., Zhou, J., Zhanf, H., and Gui, Z., “Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate-citrate gels,” Materials Science and Engineering B, Vol. 64, pp. 68-72, 1999.
[26] Yue, Z., Zhou, J., Li, L., Zhang, H. and Gui, Z., “Synthesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method,” Journal of Mgnetism and Magnetic Materials, Vol. 208, pp. 55-60, 2000.
[27] Z.A. Munir, “synthesis of high temperature materials by self-propagating combustion methods,” Ceram. Bull., Vol. 67, pp. 342, 1988.
[28] P.B. Avakyan, M.D. Nersesyan, A.G., “New materials for electronic methods,” Am. Ceram. Soc. Bull., Vol. 75, pp. 50-55, 1996.
[29] http://www.msal.net/ziliao/yingyong4.htm。
[30] Paul W. Cooper, Stanley R. Kurowski, Technology of Explosives Wiley-VCH, New York, NY, 1996, pp. 5-7.
[31] Joint Committee on Powder Diffraction Standards (JCPDS) file number: 84-1531.
[32] Wohlfarth, E.P.; see Ref. [10], pp.334-342.
[33] R. Valenzuela, Magnetic Ceramics, Cambridge University Press, Cambridge, U.K., 1994.
[34] A.S. Albuquerque, J.D. Ardisson, W.A.A. Maccdo, “Nanosized powders of NiZn ferrite:Synthesis, structure, and magnetism,” J. Appl. Phys., Vol. 87, pp. 4352-4357, 2000.
[35] R. Nawathey-Dikshit, S.R. Shinde, S.B. Ogale, S.D. Kulkarni, S.R. Sainkar, S.K. Date, “Synthesis of single domain strontium ferrite powder by pulsed laser ablation,” Appl, Phys. Lett., Vol. 68, pp. 3491-3493,1996.
[36] K. Ishino, Y. Narumiya, “Development of magnetic of magnetic ferrites: control and application of losses,” Am. Ceram. Soc. Bull., Vol. 66, pp. 1469-1474, 1987.
[37] D. W. Richerson, Modern Ceramic Engineering: Properties “Dielectric, Magnetic, and Optical Behavior”; Ch. 7 pp. 251-312 in, Processing and Use in Design, 2nd ed. Marcel Dekker, Inc., NY, 1992.
[38] T.Tsutaoka, M.Ueshima, T. Tokunaga, T.Nakamura, K. Hatakeyama, “Frequency dispersion and temperature variation of complex permeability of Ni-Zn ferrite composite materials,” J.Appl. Phys., Vol. 78, pp. 3983-3991, 1995.
[39] Y.P. Fu, C.H. Lin, “Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwaved-induced combustion process,” J. Alloy. Compd., Vol. 386, pp. 222-227, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top