跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 03:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許建彬
研究生(外文):Chien-Pin Hsu
論文名稱:燃料電池觸媒漿料分散之研究
論文名稱(外文):Research on catalyst dispersion in paste of fuel cell
指導教授:葛明德葛明德引用關係
指導教授(外文):Ming-Der Ger
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
外文關鍵詞: Japan after
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池繼火力、風力及核能發電後被稱為第四代發電技術,其具備低污染、高效率及可長期使用之特性,而成為近年來美、歐、日各國爭相發展及推廣之新能源技術。其中,以質子交換膜燃料電池為基礎,使用甲醇為燃料的直接甲醇燃料電池(Direct Methanol Fuel Cell,簡稱DMFC)是微型燃料電池發展的主流,因其結構簡單、安全、易攜帶且能量密度高,十分適合作為攜帶型電子產品的電源,因此成為全世界各國爭相追逐的一項重要技術和產品。
直接甲醇燃料電池尚未商業化的主要原因之一是放電功率低落與材料成本過高,電極使用貴金屬觸媒雖可增加膜電極組的放電功率,但觸媒使用之效率太低。觸媒使用效率的提高有賴於在製程上適度控制電極內的孔隙度、親疏水性、導離子高分子的分散與分佈。
本研究除以適當之攪拌方式對觸媒進行分散之外,再選擇適合之分散劑使漿料穩定,並能減少其對觸媒活性之影響,觸媒之分散效果以雷射光散射儀進行粒徑及表面電位檢測,並以流變儀分析漿料之分散性,將調配完成之漿料進行塗佈並組裝成電極進行CV效能分析,探討其放電效能與壽命。由本研究結果顯示,以行星式攪拌之觸媒粒徑可達400 nm以下為最佳之物理分散方式,化學分散以添加分散劑SA 對電性影響最小,其分散效果,粒徑約250 nm,表面電位達-48 mV,最終單電池效能檢測,可成功降低漿料的觸媒使用量,達到較佳之放電效能。
關鍵詞:直接甲醇燃料電池,膜電極組,流變儀
The fuel cell is known as the fourth generation of technology of generating electricity after generating electricity in fire power, wind-force and nuclear energy, it possesses low polluting, high efficiency and characteristic that can long run , and become the new energy technology which various countries of U.S.A., Europe, Japan fall over each other to develop and popularize in recent years. Exchange the membrane fuel cell as the foundation with the proton, use the methyl alcohol as the direct methyl alcohol fuel cell of the fuel is the mainstream that the miniature fuel cell is developed.
Direct methyl alcohol fuel cell can not be commercial because of low discharge power and material cost too high, the electrode uses the noble metal catalyst to improve catalyst service efficiency, not only can increase the power of discharging of the membrane electrode group, will reduce the material cost too. Improvement, catalyst of service efficiency it depends on to be appropriate to control hole degree, hydrophile, polymer disperse and distribution on electrode.
Outside dispersing the catalyst in this paper divided by proper mixing way, and then choose the suitable dispersant to make the paste steady, and can reduce its influence on the catalyst activation .The dispersion of catalyst paste is analyzed with laser scattering, rheometer. Assemble into an electrode and carry on CV efficiency to analyze finally, the efficiency and life-span that probe into it and discharge. In this research, the planet mixer was the best physical dispersal procedures. By the planet mixer, the particle size of catalyst was below 400 nm. In chemical dispersion method, the dispersant SA was the most less influence on catalyst activity, and the particle size was about 250 nm and zeta potential was -48 mV. Finally, the result of single cell measurement, we can reduce catalyst content in paste of fuel cell and improve the performance of single cell.

Key word: Direct methanol fuel cell, Membrane electrode assembly, Rheometer
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
1. 緒論 1
1.1 前言 1
1.2 燃料電池發展歷史 2
1.3 燃料電池種類 2
1.3.1 鹼性燃料電池(Alkaline fuel cell, AFC) 3
1.3.2 磷酸燃料電池(Phosphoric acid fuel cell, PAFC) 3
1.3.3 熔融碳酸鹽燃料電池(Molten carbonate fuel cell, MCFC) 4
1.3.4 固態氧化物燃料電池(Solid oxide fuel cell, SOFC) 5
1.3.5 質子交換膜燃料電池(Proton exchange membrane fuel cell, PEMFC) 5
1.3.6 直接甲醇燃料電池(Direct methanol fuel cell, DMFC) 6
1.4 研究動機與目的 7
2. 膠體分散原理與文獻回顧 8
2.1 膠體粒子導論 8
2.1.1膠體之定義 8
2.1.2 粒子之特性 8
2.1.3 粒子間的作用力 10
2.2 分散機制 12
2.2.1 靜電排斥穩定理論 12
2.2.2 立體障礙穩定理論 13
2.2.3 奈米粉體的分散 15
2.3 電極漿料的分散及流變性 17
3. 實驗 21
3.1 實驗材料 21
3.2 實驗設備 22
3.3 實驗步驟 23
3.3.1 物理攪拌方式之選擇 23
3.3.2 化學分散劑之選擇 24
3.3.3 電極之製作 25
3.3.4 參考電極之製作 25
3.3.5 電化學檢測 25
3.3.6 MEA熱壓 25
4. 結果與討論 27
4.1. 物理攪拌方式之選擇 27
4.1.1 粒徑分析 27
4.1.2 表面電位量測 29
4.1.3 沉降試驗 31
4.2 化學分散劑之選擇 33
4.2.1 粒徑分析 33
4.2.2 表面電位 34
4.2.3 分散劑比例對電性之影響 35
4.2.4 沉降試驗 40
4.2.5 流變分析 42
4.3 增稠劑之選擇 43
4.3.1 增稠劑對電性之影響 43
4.3.2 穩定性測試 49
4.3.3 添加增稠劑之親疏水性 52
4.4 電極漿料檢測 53
4.4.1 電極漿料電性檢測 53
4.4.2 電極漿料分散性檢測 57
4.5 單電池效能檢測 58
5. 結論 61
參考文獻 62
自傳 65
[1] Giner, J., Hunter C., “The Mechanism of Operation of the Teflon-Bonded Gas Diffusion Electrode: A Mathematical Model,” J. Electrochem. Soc., Vol. 116, pp. 1124-1130, August, 1969.
[2] Ticianelli, E. A., Derouin, C. R., Redondo, A., and Srinivasan, S., “Methods to Advance Technology of Proton Exchange Membrane Fuel Cells,” J. Electrochemical. Soc., Vol. 135, pp. 2209-2214, September, 1988.
[3] Appleby, A. J., Folkes, F. R., “Fuel Cell Handbook,” Van Nostr and Reinhold, New York, 1989.
[4] Parfitt, G. D., “ Dispersion of Powders in Liquids,” Applied Science Publishers Inc, 3rd. ed., New Jersey, 1981.
[5] 張有義,郭蘭生,膠體及界面化學入門,高立圖書出版社,台北,第233-234頁,2004。
[6] 趙承琛,界面科學基礎,復漢出版社,台南,第6頁,1997。
[7] 侯萬國,孫德軍,張春光,應用膠體化學,科學出版社,北京,第34頁,1998。
[8] Schmidt, H. K., “Organically Modified Silicates and Ceramics an Two-Phase System:Synthesis and Processing,” J. Sol-Gel Soc. Tech., Vol. 8, pp.557-565, 1997.
[9]高濂 ,孫靜,劉陽橋編著;徐開鴻校訂,奈米粉體的分散及表面改性,五
南圖書出版公司,北京,2005。
[10]高濂,李蔚著,奈米陶瓷,化學工業出版社,北京,2002。
[11]Ward, J. S., Martin, F. D., “Prediction of Viscosity for Partially Hydrolyzed Polyacrylamide Solution in the Presence of Calcium and Magnesium Ions,” Soc Pet Eng J, Vol. 21, pp. 623-631, 1981.
[12]Ait, K. A., Carreau, P. J., Chauveteau, G., “Rheological Properties of Partially Hydrolyzed Polyacrylamide Solution,” J. Rheology, Vol. 33, pp. 537-561, 1981.
[13] Blackburn, S., Bohm, H., “Silicon Carbide Fiber-Reinforced Alumina Extrusion,” J. Materials Research, Vol. 10, pp. 2481-2487, 1995.
[14] Coussot, P., Proust, S., and Ansey, C., “Rheological Interpretation of Yield Strress Fluids,” J. Non-Newtonian Fluid Mechanics, Vol. 66, pp. 55-70, September, 1996.
[15]Pabst, W., Havrda, J., and Gregorova, E., “Rheology of Ceramic Injection-Molding Feedstocks,” Ceramics-Silikaty, Vol. 43, No.1, pp. 1, 1999.
[16] Zhang, S. Y., Xiang, X. Y., “Constitutive Relationship of Visco-Elasticity of Polymer Matrix Composites with Creep Damage,” International Sample Electronics Conference, Vol. 24, p. 319, 1992.
[17] Struble, L. J., Schultz, M. A., “Paste Rheology,” Proceedings of the Engineering Foundation Conference, Vol. 21, p. 147, 1994.
[18] Huang, L., Song, J., Wu, Y., Gao, S. T., “Rheological Behavior of Alkaline / Surfactant / Polymer Flooging System,” Universitatis Jilinensis, Vol. 3, pp. 99-101, 1999.
[19] Zhang, Z. I., Sun, C., Gu, H. C., “Effects of Additives on the Rheological Behavior of the Microalumina Concentrated Susspensions,” Journal of East China University, Vol. 25, No.1, pp. 63-66, 1999.
[20] Tang, F., Huang, X., Zhang, Y. F., Guo, J. K., “Study on Rheological Properties of Nano-size Zirconia Suspension,” Materials Science and Engineering, Vol. 17, No.1, pp. 8-11, 1999.
[21] Uchikawa, H., Hanehara, S., and Hirao, H., “ Influence of Microstructure on the Physical Properties of Concrete Prepared by Substituting Mineral Powder for Part of Fine Aggregate,” Cement and Concrete Research, Vol. 26, pp. 101, 1996.
[22] Xu-Kaqiu, and Gao-Xiahong, “Surface Organic Modification of TiO2 Pigment,” Chemical Industry and Engineering Progress, Vol. 22, No.11, pp. 1200-1202, 2003.
[23] Xu-Chunchun, Yu-Kai, and He-Zonghu, “Study on the Dispersion of TiO2 in Water,” Chemical Industry and Engineering Progress, Vol. 22, No.10, pp. 1095-1097, 2003.
[24] Wang-Xuhai, Lu-Xuchen, and Li-Youchu, “Viscosity of Kaolin Slurry from Coal Seam and the Influencing Factors,” The Chinese Journal of Process Engineering, Vol. 4, No.4, pp. 295-299, 2004.
[25] Li-Lingxin, and Xia-Weiming, “Study on the dispersion of carbon fibers in aqueous solution,” Hi-Tech Fiber & Application, Vol. 25, No.4, pp. 26-29, 2000.
[26]Shen-Zhigang, Chen-Jianfeng, Zou-Haikui, and Yun-Jimmy. “Dispersion of nanosized aqueous suspensions of barium titanate with ammonium polyacrylate,” Journal of Colloid and Interface Science, Vol. 275, pp. 158-164, July, 2004.
[27] Rahul S., Jochen W., Greg J., and Hulbert J. M. “Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions,” Food Hydrocolloids, Vol. 17, pp. 191-197, March, 2003.
[28] 任俊,沈健,盧壽慈著,顆粒分散科學與技術,化學工業出版社,北京,第167頁,2005。
[29] Linqin Jiang and Lian Gao, “Effect of Tiron Adsorption on the Colloidal stability of Nano-Sized Alumina Suspension,” Material Chemistry and Physics, Vol. 80, pp. 157-161, 2003.
[30] 梁文平,殷福珊著,表面活性劑在分散體系中的應用,中國輕工業出版社,北京,第5頁,2003。
[31] 李玲著,表面活性劑與奈米技術,化學工業出版社,北京,第166頁,2003。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文