跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施建州
研究生(外文):Chien-Chou Shih
論文名稱:含螯合基功能性高分子之合成與鑑定研究
論文名稱(外文):Synthesis and Characterization of the Functional Copolymer Containing Chelating Groups
指導教授:張德全吳國輝吳國輝引用關係
指導教授(外文):Te-Chuan ChangKuo-Hui Wu
學位類別:博士
校院名稱:國防大學中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:124
中文關鍵詞:甲基丙烯酸甲酯螯合基無乳化聚合錯合物摻合物氫質子自旋-晶格緩解時間摻合物抑菌性
外文關鍵詞:poly(methyl methacyrlate)chelating monomercomplexblendSpin-lattice relaxation timeantibacterial activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要是利用四種不同結構之親水性螯合基單體與甲基丙烯酸甲酯(MMA)單體使用無乳化聚合方法共聚合成之親水性功能性高分子,以改質壓克力材料的特性。並利用所獲得的不同共聚高分子材料生成各式金屬錯合物、含硼錯合物及導電高分子摻合物。其運用及特性在本文各段均有詳細的敍述,本文的研究範圍主要包括有利用紅外線光譜儀及固態13C液態1H核磁共振光譜儀鑑定共聚物高分子、錯合物及摻合物化學結構,並由量測共聚物及錯合物氫質子自旋晶格緩解時間(T )、自旋擴散路徑(L)探討共聚物分子及錯合物分子的局部運動性,進而運用熱微差掃描卡計(DSC)和熱重損失分析儀(TGA)等儀器研究共聚物和錯合物的熱分解安定性及可溶混性(Miscibility)。利用電子自旋光譜儀研究合成之聚苯胺(PANI)導電高分子摻合物之導電特性及分子間作用力,及利用微生物指標法研究金屬錯合物抑菌、殺菌的效能。結果發現含亞胺二醋酸、二乙醇胺共聚物中MMA主鏈段的自旋晶格緩解時間比在聚甲基丙烯酸甲酯小,顯示因具較長且柔軟側鏈分子的螯合基單體導入,使的高分子的分子運動性增加,另在金屬錯合物中的值因螯合作用而變大,表示金屬錯合物的分子運動性反而減少。含三胺基甲烷共聚物有效吸附硼酸,其在裂解時產生交連反應並提高共聚物的熱氧化安定性。由電子自旋光譜的結果顯示在亞胺二醋酸共聚摻合物上之具導電性PANI含量比在丙烯酸共聚摻合物上的多,顯示主要原因應是活性位置不同而造成,而PNAI與共聚物的分子間作用力亦隨PANI含量及溫度而變化。另外,發覺不同金屬錯合物對微生物有不同效果之抑菌作用,以含銅、銀錯合物抑菌效果最好。
The purposes of this dissertation were to synthesize and characterize poly(methyl methacyrlate) containing hydrophilic chelating monomer copolymers and their complexes (Blends) via the free-emulsifitation technique. IR spectra and 13C-NMR CP/MAS spectroscopy were also used to confirm the chemical structures of reaction products. Moreover, the dynamics on local mobility of the copolymers and the complexes were investigated by the Spin-lattice relaxation time constant in the rotating frame (T ) and spin-diffusion path length (L) measurements. The glass transition temperatures, thermal stability and misibility of copolymers, and complexes were also investigated by differential scanning calorimetry and thermogravimetric analysis. The conducting blends were characterized with UV-Vis, FTIR, differential scanning calorimetry (DSC), and electron paramagnetic resonance (EPR). The results indicated that the intermolecular interaction of blends was dependent on the content of PANI, the type of the active site, and the temperature. We found that smaller lattice relaxation time of the MMA main chain in the copolymers of the containing iminodiacetic acid (IDA) and diethanolamines (DEA) than that of the PMMA polymer revealed that the mobility of enhances. The apparent activation energy (Ea) of boron-containing complex with tris(hydroxyl- methyl)-aminomethane (Tris) in air was higher than that of the unchelated copolymer. The result suggested that the thermally stable crosslinking structure was formed during the process of heating and enhanced the stability of the copolymer. The antimicrobial activities of the complexes against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Bacillus circulans were tested by the Halo method. The Cu(II) ion and Ag(I) ion complex showed the better inhibition than the other complexes.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 x
圖目錄 xi
縮寫辭彙 xiv
1. 緒論 1
1.1前言 1
1.2 研究目的 8
1.3 研究範圍 8
1.4 文獻回顧……………………………………………………………………10
1.4.1功能性螯合基共聚物介紹…………………………………………10
1.4.2金屬錯合物的介紹及應用…………………………………………11
1.4.3有機合成金屬摻合物介紹…………………………………………11
1.5研究方法 ………………………………………………………………13
1.5.1結構鑑定……………………………………………………………13
1.5.2 13C 與 1H 交叉極化動態學分析…………………………………13
1.5.3 1H 自旋-晶格緩解時間分析………………………………………14
1.5.4熱裂解動力學………………………………………………………15
1.5.5電子順磁共振(EPR)的原理………………………………………16
1.5.6抑菌性及抑菌原理…………………………………………………18
2. 功能性高分子合成及與鑑定 ………………………………………………20
2.1聚甲基丙烯酸甲酯甲基丙烯酸甘油酯亞胺二醋酸共聚物合成及其錯合物之特性研究…………………………………………………………………20
2.1.1 前言………………………………………………………………20
2.1.2 實驗部份…………………………………………………………22
2.1.2.1 化學藥品………………………………………………………22
2.1.2.2 共聚物聚合反應及錯合物製備………………………………23
2.1.2.3 鑑定及特性研究………………………………………………25
2.1.2.4 實驗架構………………………………………………………26
2.1.3 結果與討論………………………………………………………27
2.1.3.1 結構與特性……………………………………………………27
2.1.3.2 鏈的移動性 …………………………………………………31
2.1.3.3 熱安定性 ……………………………………………………34
2.1.4 結論………………………………………………………………36
2.2聚含甲基丙烯酸甲酯甲基丙烯酸甘油酯二乙醇胺共聚物合成及含銀、鎳、銅、鉻金屬錯合物鑑定及抑菌性研究…………………………………37
2.2.1 前言………………………………………………………………37
2.2.2 實驗部份…………………………………………………………38
2.2.2.1 化學藥品………………………………………………………38
2.2.2.2 共聚物聚合反應及錯合物製備………………………………39
2.2.2.3 抑菌性測試 …………………………………………………40
2.2.2.4 實驗架構………………………………………………………41
2.2.3 結果與討論………………………………………………………42
2.2.3.1 共聚物及錯合物的結構及特性 ……………………………42
2.2.3.2 鏈運動性………………………………………………………46
2.2.3.3 熱安定性………………………………………………………47
2.2.3.4 抑菌性測試……………………………………………………51
2.2.4 結論………………………………………………………………53
2.3含硼高分子共聚物之鏈動力學及熱安定性研究…………………………54
2.3.1前言…………………………………………………………………54
2.3.2實驗部份……………………………………………………………55
2.3.2.1 化學藥品.………………………………………………………55
2.3.2.2 共聚物聚合反應及錯合物製備………………………………56
2.3.2.3 實驗架構.………………………………………………………58
2.3.3 結果與討論………………………………………………………60
2.3.3.1 共聚物及錯合物的結構及特性 ……………………………60
2.3.3.2 鏈運動性………………………………………………………62
2.3.3.3 熱安定性分析…………………………………………………65
2.3.4 結論………………………………………………………………69
2.4聚甲基丙烯酸甲酯甲基丙烯酸甘油酯亞胺二醋酸鈉鹽/聚甲基丙烯酸甲酯丙烯酸鈉鹽共聚物摻合聚苯胺之電子順磁共振光譜研究…………70
2.4.1 前言………………………………………………………………70
2.4.2 實驗部份…………………………………………………………72
2.4.2.1 化學藥品………………………………………………………72
2.4.2.2 共聚物聚合反應及摻合物製備………………………………73
2.4.2.3 鑑定及特性研究………………………………………………74
2.4.2.4 實驗架構………………………………………………………75
2.4.3 結果與討論………………………………………………………76
2.4.3.1 紫外線-可見光光譜(UV-Vis)與紅外線光譜(FTIR)鑑定和特性………………………………………………………76
2.4.3.2 電子順磁共振光譜線型(EPR Lineshape)……………………77
2.4.3.3 g值與A/B比值(g factor & A/B ratio)…………………………79
2.4.3.4 譜寬(Peak-to-peak linewidth; Hpp) …………………………81
2.4.3.5 自旋濃度(Spin concentration; Ns)……………………………83
2.4.4 結論……………………………………………………………85
3. 總結論 ………………………………………………………………………86
參考文獻 ………………………………………………………………………88
論文發表……………………………………………………………………103
自 傳……………………………………………………………………106
[1] Rosen, S. L., Fundamental Principles of Polymeric Materials, John Wiley & Sons, New York, pp.17, 1993.
[2] Sperling, L. H., Introduction to Physical Polymer Science, 2nd ed., John Wiley & Sons, New York, pp.88–89, 2001.
[3] 郁仁貽,實用聚合物化學及塑膠之成形與應用,徐氏基金會出版,台北,1994。
[4] 郭建志,高分子的高科技應用,高立圖書有限公司,台北,第28–34頁,1996。
[5] Chang, T. C., Chen, H. B., Chen, Y. C., and Ho, S. Y., “Degradation of polydimethylsiloxane-block-polystyrene copolymer,” Polymer Degradation and Stability, Vol.57, pp.7–14, 1997.
[6] Chang, T. C., Liao, C. L., Wu, K. H., Wang, G. P., and Chiu, Y. S., “Char- acterization and Degradation of the Poly(methylphenylsiloxane)–Poly(methyl methacrylate) Graft Copolymer,” Journal of Polymer Science: Part A: Polymer Chemistry, Vol.36, pp.2521–2530, 1998.
[7] Chang, T. C., Wu, K. H., Liao, C. L., and Wang, G. P., “Characterization and degradation of poly(methylphenylsiloxane)-poly(methylmethacrylate) inter- penetrating polymer networks,” Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 37, pp.1717–1724, 1999.
[8] Linsheng, T., Jingwei, Y., Shufeng, Z., Jinzong, Y., and Yumin, W., “Emulsifier- Minor Emulsion Copolymerization of BA-MMA-St-MAA(or AA)-N-MA,” Journal of Applied Polymer Scence, Vol.92, pp.2923–2929, 2004.
[9] Tamai, H., Hasegawa, M., and Suzawa, T., “Surface Characterization of Hydrophilic Functional,” Journal of Applied Polymer Scence, Vol.38, pp.403–412, 1989.
[10] 莊孝感,“核生化防護發展之現況與未來”,核生化防護,第八十期,第31–51頁,2005.
[11] Park, J. S., Kim, J. H., Nho, Y. C., and Kwon, O. H., “Antibacterial Activities of Acrylic Acid-Grafted Polypropylene Fabric and Its Metallic Salt,” Journal of Applied Polymer Scence, Vol.69, pp.2213–2220, 1998.
[12] Kaya, I., Vilayyetoglu, A. R., and Topak, H., “Synthesis of oligo- ortho-azomethinephenol and its oligomer-metal complexes: Characterization and application as anti-microbial agents,” Journal of Applied Polymer Scence, Vol.85, pp.2004–2013, 2002.
[13] El-Sawy, N. M., and Sagheer, F.A., “Radiation-induced graft polymerization of acrylic acid onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer flms: complexation with some transition metals and biological activity,” European Polymer Journal, Vol.37, pp161–166, 2001.
[14] “Institute for Soldier Nanotechnologies” http://www.drdc-rddc.dnd.ca/ newsevents/events/sympo/8.pdf
[15] Buckley, L., and Collins, G., U.S. Pat., 5,674,752 (1997).
[16] Nakajima, T., and Kawagoe, T., “Polyaniline: structural analysis and application for battery,” Synthetic Metals, Vol. 28, pp.C629–C638. 1989.
[17] Karami, H., and Mousavi, M. F., “A novel dry bipolar rechargeable battery based on polyaniline,” Journal of Power Sources, Vol.124, pp.303–308, 2003.
[18] Schauer, T., Joos, A., Dulog, L., and Eisenbach, C. D., “Protection of iron against corrosion with polyaniline primers,” Progress in Organic Coatings, Vol.33, pp.20–27, 1998.
[19] Dominis, A. J., Spinks, G. M., and Wallace, G. G., “Comparison of polyaniline primers prepared with different dopants for corrosion protection of steel,” Progress in Organic Coatings, Vol.48, pp.43–49, 2003.
[20] Senjdarkova, M., Svobodova, L., Evtugyn, G., Budnikov, H., Karyakin, A., Nikolelis, D. P., and Hianik, T., “Acetylcholinesterase sensors based on gold electrodesmodified with dendrimer and polyanilineA comparative research,” Analytica Chimica Acta, Vol.514, pp.79–88, 2004.
[21] Paligovà, M., Vilcákova, J., Sáha, P., Kresálek, V., Stejskal, J., and Quadrat, O., “Electromagnetic shielding of epoxy resincomposites containing carbon fibers coated withpolyaniline base,” Physica A, Vol.335, pp.421–429, 2004.
[22] Gregory, R. V., Kimbrell, W. C., and Kuhu, H. H., “CONDUCTIVE TEXTILES,” Synthetic Metals, Vol.28, pp.C823–C835, 1989.
[23] Kuhu, H. H., Andrew, D. C., and William, C. K., “Toward Real Applications of Conductive Polymers,” Synthetic Metals, Vol.71, pp.2139–2142, 1995.
[24] Ballarin, B., Fraleoni-Morgera, A., Frascaro, D., Marazzita, Piana, C., and Setti, L., “Thermal inkjet microdeposition of PEDOT:PSS on ITO-coated glass and characterization of the obtained film,” Synthetic Metals, Vol.146, pp.201–205, 2004.
[25] Chaubey, A., Pande, K. K., and Malhotra, B. D., “Application of Polyaniline /Sol-Gel Deevied Tetraethylorthosilicate Films to an Amperometric Lactate Biosensor,” Analytical Sciences, Vol.19, pp.1477–1480, 2003.
[26] Gregor, “Chelate Ion Exchange Resins,” Industrial and Engineering Chemistry, Vol.44, pp.2834–2839, 1952.
[27] Denizli, A., Salih, B., Senel, S., and Arica, M. Y., “New Metal Chelate Sorbent for Albumin Adsorption: Cibacron Blue F3GA-Zn(II) Attached Microporous Poly(HEMA) Membranes,” Journal of Applied Polymer Scence, Vol.68, pp.657–664, 1998
[28] Naka, K., Tachiryama, Y., Ohki, A., and Maeda, S., “A New Polymer Chelate Precursor System to the YBa2Cu3O7-x Superconductor Using Poly(N,N- dicarboxymethyl)allylamine,” Journal of Polymer Science: Part A: Polymer Chemistry, Vol.34, pp.1003–1013, 1996
[29] Kavakli, C., Ozvatan, N., Ali Tuncel, S., and Salih, B., “1,4,8,11-Tetraazacyclo- tetradecane bound to poly(p-chloromethylstyrene-ethylene glycol dimethacrylate) microbeads for selective gold uptake,” Analytica Chemica Acta, Vol.464, pp.313–322, 2002.
[30] Warshawsky, A., and Patchornik, A., “Impregnated resins: metal-ion complexing agents incorporated physically in polymeric matrices,” Israel Journal of Chemistry, Vol.17, pp.307–315, 1978.
[31] Audu, A. A., “THE SYNTHESIS OF SILICA-IMMOBILIZED 1,2-NAPHTHO- QUINONE THIOSEMICARBAZONE WITH 3-AMINOPROPYLTRI- ETHOXY SILANE AND 4-NITREBENZOYL CHLORIDE,” Reactive Polymers, Vol.10, pp.3, 1989.
[32] Ludovic, J., Joelle, M., Michele, D., and Michel, M., “Linear and crossliked copolymers of vinylamine with vinyl pyrolidone or methyl methacrylate. Chelation of copper,” European Polymer Journal, Vol.28, pp.1185–1189, 1992.
[33] Hebeish, A., and El-Hilw, Z. H., “Preparation of DEAE Cotton-g-Poly(meth- acrylic acid) for Use as Ion Exchanger,” Journal of Applied Polymer Scence, Vol.67, pp.739–745, 1998.
[34] Kaliyappan, T., Swaminathan, C. S., and Kannan, P., “Synthesis amd characterization of a new metal chelating polymer and derived Ni(ІІ) and Cu(ІІ) polymer complexes,” Polymer, Vol. 37, pp.2865–2869, 1996.
[35] Samia, M. M., El-Sabee, Z., Said, S. E., and Magdy, W. S., “Radical polymerization behavior of N-acryloyl N′-cyanoacetohydrazide,” Polymer Journal, Vol.29, pp.964–969, 1997.
[36] Wang, C. C., Chang, C. C., and Chen, C. Y., “Study on Metal Ion Adsorption of BifunctionalChelating/Ion-Exchange Resins,” Macromolecular Chemistry and Physics, Vol.202, pp.882–890, 2001.
[37] Sengupta, S., “Electro-partitioning with composite ion-exchange material: aninnovative in-situ heavy metal decontamination process,” Reactive and Functional Polymers, Vol. 40, pp.263–273, 1999.
[38] Guevara-García, J. A., Barba-Behrens, N., Tapia-Benavides, A. R., and Rosales- Hoz, M. J., “Coordination chemistry of iminodiacetic esters. Structural and spectroscopic characterization of copper(ІІ) and zinc(ІІ) monoethylimino- diacetato complexes,” Inorganica Chimica Acta, Vol. 239, pp.93–97, 1995
[39] Carbajal, M. L., Smolko, E. E., and Grasselli, M., “Oriented immobilization of proteinson grafted porous polymers,” Nuclear Instruments Methods in Physics Research B, Vol.208, pp.416–423, 2003.
[40] Kaliyappan, T., and Kannan, P., “Co-ordination polymers,” Procgress in Polymer Science, Vol.25, pp. 343–370, 2000.
[41] Lee, W. F., and Tu, Y., “Physical Properties of Poly(vinyl chloride)–Grafted N-Isopropylacrylamide Graft Copolymers and Corresponding Polyblends,” Journal of Applied Polymer Scence, Vol.76, pp.170–178, 2000.
[42] Xanthos, M., “Interfacial agents for multiphase polymer systems: Recent advances,” Polymer Engineering and Science, Vol.28, pp.1392–1400, 1988.
[43] Xanthos, M., And Dagli S. S., “Compatibilization of polymer blends by reactive processing,” Polymer Engineering and Science, Vol.31, pp.929–935, 1991.
[44] Coleman, M. M., and Paainter, P. C., “HYDROGEN BOUND POLYMER BLENDS,” Progress in Polymer Science, Vol.20, pp.1–59, 1995.
[45] Eisenberg, A., Smith, P., and Zhou, Z. L., “Compatibilization of the polystyrene/poly(ethyl acrylate) and polystyrene/polysoprene systems through ionic interactions,” Polymer Engineering and Science, Vol.22, pp.1117–1122, 1982.
[46] Russell, T. P., Jeromr, R., Charier, P., and Foucart, M., “The Microstructure of Block Copolymers Formed via IonicInteractions,” Macromolecules, Vol.21, pp.1709–1917, 1988.
[47] Paul, D. R., and Barlow, J. W., “A binary interaction model for miscibility of copolymers in blends,” Polymer, Vol.25, pp.487–494, 1984.
[48] Panayiotou, C., “Thermodynamics of random copolymer mixtures,” Die Makromolekulare Chemie, Vol.188, pp.2733–2734, 1987.
[49] Banerjee, P., and Mandal, B. M., “Conducting Polyaniline Nanoparticle Blends with Extremely Low Percolation Thresholds,” Macromolecules, Vol. 28, pp. 3940–3943, 1995.
[50] Yoon, C. O., Reghu, M., Moses, D., Cao, Y., and Heeger, A. J., “Anisotropy in Conductivity of Stretched Polyniline Film,” Synthetic Metals, Vol.69, pp.225–226, 1995.
[51] McFarland, J. P., Boettchar, E. J., Naoto, M., and Ihas, G, G., “Stability of electrical self-oscillation inPANi-CSA/PMMA composites,” Physica B, Vol.284, pp.1954–1955, 2000.
[52] Liu, J. M., Sun, L., and Yang, S. C., US Patent 5,489,400 (1996).
[53] Mehring, M., Principles of High Resolution NMR in Solids, 2nd ed., Springer, Berlin, 1983.
[54] Van Krevelen, D. W., Van Herden, C., and Huntjens, F. J., “Physicochemical aspects of the pyrolysis of coal and related organic compounds,” Fuel, Vol.30, pp.253–259, 1951.
[55] Kissinger, H. H. E., “Reaction Kinetics in Differential Thermal Analysis,” Analytic Chemistry, Vol. 29, pp.1702–1706, 1957.
[56] Shirkhanzadeh, M., Azadegan, M. G., and Liu, Q., “Bioactive delivery systems for the slow release of antibiotics: incorporation of Ag+ ions into micro-porous hydroyapatite coatings,” Material Letters, Vol.24, pp.7–12, 1995.
[57] Nicemol, S., Bini, G., and Beena, M., “Metal complexes of poly(acrylic acid):synthesis,characterization and thermogravimetric studies,” Polymer Degradation and Stability, Vol.60, pp.371–375, 1998.
[58] Morlay, C., Cromer, M., Mouginot, Y., and Vittori, O., “Potentiometric study of Cu(Ⅱ) and Ni(Ⅱ) complexation with two high molecular weight poly(acrylic acids),” Talanta, Vol.45, pp.1177–1188, 1998.
[59] Morlay, C., Cromer, M., Mouginot, Y., and Vittori, O., “Potentiometric study of Cd(II) and Pb(II) complexation with two high molecular weight poly(acrylic acids); comparison with Cu(II) and Ni(II),” Talanta, Vol.48, pp.1159–1166, 1999.
[60] Mary, P. Mc., and Laurence, A. B. “Spectroscopic analysis of transition-metal coordination complexesbased on poly(4-vinylpyridine) and dichlorotricarbonyl- ruthenium(II),” Polymer, Vol.40, pp.2889–2902, 1999.
[61] Wu, K. H., Wang, Y. R., and Hwu, W. H., “FTIR and TGA studies of poly(4- vinylpyridine-co-divinylbenzene)–Cu(II) complex,” Polymer Degradation and Stability, Vol.79, pp.195–200, 2003.
[62] Pekel, N., and Guven, O., “Separation of uranyl ions with amidoximated poly(acrylonitrile/N-vinylimidazole) complexing sorbents,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.212, pp.155–161, 1999.
[63] Wu, K. H., Chang, T. C., Wang, Y. T., Hong, Y. S., and Wu, T. S., “Interactions and mobility of copper(II)–imidazole-containing copolymers,” European Polymer Journal, Vol.39, pp.239–245, 2003.
[64] Wang, C. C., and Chen, C. Y., “Detection of lead ion binding on bifunctional chelating/ion-exchange resins by cross-polarization/magic-angle spinning solid-state nuclear magnetic resonance,” Journal of Applied Polymer Scence Vol.85, pp.919–928, 2002.
[65] Chen, C. Y., and Chen, C. Y., “Stability Constants of Polymer-Bound Iminodiacetate-Type Chelating Agents with Some Transition-Metal Ions,” Journal of Applied Polymer Scence, Vol.86, pp.1986–1994, 2002.
[66] Sengupta, S., “Electro-partitioning with composite ion-exchange material: aninnovative in-situ heavy metal decontamination process,” Reactive and Functional Polymer, Vol.40, pp.263–273, 1999.
[67] Gomez, C. G., Alvarez, C. I., and Strumia, M. C., “Influence of the morphology of poly(EGDMA-co-HEMA) on the chemical modifications and retention of O-phosphothreonine,” Journal of Bichemical and Biophysical Methods, Vol.55, pp.23–36, 2003.
[68] Wnag, C. C., Chen, C. Y., and Chen, C. Y., “Synthesis of chelating resins with iminodiacetic acid and its wastewater treatment application,” Journal of Applied Polymer Scence, Vol.84, pp.1353–1362, 2002.
[69] Hou, W. H., Chen, C. Y., Wang, C. C., and Huang, Y. H., “The effect of different lithium salts on conductivity of comb-likepolymer electrolyte with chelating functional group,” Electrochimica Acta, Vol.48, pp.679–690, 2003.
[70] Wang, P. H., and Pan, C. Y., “Polymer metal composite microspheres Preparation and characterization of poly(St-co-AN)Ni microspheres,” European Polymer Journal, Vol.36, pp.2297–2300, 2000.
[71] Wang, C. C., Cheng, M. H., Chen, C. Y., and Chen, C. Y., “Facilitated transport of molecular oxygen in cobalt-chelated copolymer membranes prepared by soap-freeemulsion polymerization,” Journal Membrane Science, Vol.208, pp.133–145, 2002.
[72] Zheng, S., and Mi, Y., “Miscibility and intermolecular specific interactions in blends of poly(hydroxyether of bisphenol A) and poly(4-vinyl pyridine),” Polymer, Vol.44, pp.1067–1074, 2003.
[73] Yi, J. Z., and Goh S. H., “Miscibility of poly(methacrylic acid)/poly (4-vinylpyridine) blends and complexes investigated by high-resolution solid-state 13C NMR,” Polymer, Vol.42, pp.9313–9316, 2001.
[74] Adriaensens, P., Storme, L., Carleer, R., Gelan, J., and Du-Prez, F. E., “Compar- ative morphological study of poly(dioxalane)/poly(methylmethacrylate) segmented networks and blends,” Macromolecules, Vol.35, pp.3965–3970, 2002.
[75] Chen, C. Y., and Chen, C. Y., “Stability constants of water-soluble and latex types of chelating polymers containing iminodiacetic acidwith some transition-metal ions,” European Polymer Journal, Vol.39, pp.991–1000, 2003.
[76] Raudino, A., Fragala, M. E., Compagnini, G., and Puglisi, O., “Modeling of low-temperature depolymerization of poly(methyl methacrylate) promoted by ion beam,” Journal of Chemical Physics, Vol.111, pp.1721–1731, 1999.
[77] Bugella, A. E., Gonzalez-Perez, J. M., Sicilia-Zafra, A. G., Niclos-Gutierrez, J., Castineiras-Campos, A.,“Checking for the possibility of an ‘amidomethyl’ N-substituent being involved in the iminodiacetat–copper(II) chelation: synthesis, molecular and crystal structure and properties of (imidazole) (N-carbamoyl methyliminodi- acetat) copper(II), [Cu(ADA)(ImH)],” Polyhedron, Vol.18, pp.3333–3339, 1999.
[78] Karadag, A., Yilmaz, V. T., and Thoene, C., “Di- and triethanolamine complexes of Co(II), Ni(II), Cu(II) and Zn(II) with thiocyanate: synthesis, spectral and thermal studies. Crystal structure of dimeric Cu(II) complex with deprotonated diethanolamine, [Cu2(μ-dea)2(NCS)2],” Polyhedron, Vol.20, pp.635–641, 2001.
[79] Yilmaz, V. T., Topcu, Y., Yilmaz, F., and Thoene, C., “Saccharin complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with ethanolamine and diethanolamine: synthesis, spectroscopic and thermal characteristics. Crystal structures of [Zn(ea)2(sac)2] and [Cu2(μ-dea)2(sac)2],” Polyhedron, Vol.20, pp.3209–3217, 2001.
[80] Yilmaz, V. T., and Karadag, A., “Thermal decomposition of Hofmann-type complexes of di- and triethanolamine,” Thermochimica Acta, Vol.348, pp.121–127, 2000.
[81] Madarasz, J., Bombicz, P., Czugler, M., and Pokol, G., “Comparison of theophyllinato Cu(II) complexes of ethanolamine and diethanolamine Part 2. Structure and thermal study of the dimeric complex with diethanolamine,” Polyhedron, Vol.19, pp.457–463, 2000.
[82] Irissin-Mangata, J., Bauduin, G., Boutevin, B., and Gontard, N., “New plasticizers for wheat gluten films,” European Polymer Journal, Vol.37, pp.1553–1541, 2001.
[83] Takahashi, Y., Ohsugi, A., Arafuka, T., Ohya, T., Ban, T., and Matsuoka, Y., “Development of new modifiers for titanium alkoxide-based sol-gel process,” Journal of Sol-Gel Science and Technology, Vol.17, pp.227–238, 2000.
[84] Jung, H. S., Lee, J. K., Kim, J. Y., and Hong, K. S., “Synthesis of nano-sized MgO particle and thin film from diethanolamine-stabilized magnesium- methoxide,” Journal of Solid State Chemistry, Vol.175, pp.278–283, 2003.
[85] Tsuneda, S., Kagawa, H., Saito, K., and Sugo, T., “Hydrodynamic Evaluation of Three-Dimensional Adsorption of Protein to a Polymer Chain Grafted onto a Porous Substrate,” Journal of Colloid and Interface Science, Vol.176, pp.95–100, 1995.
[86] Lee, K. P., Kang, H. J., Joo, D. L., and Choi, S. H., “Adsorption behavior of Urokinase by the polypropylene film with amine, hydroxylamine and polyol groups,” Radioation Physics and Chemistry, Vol.60, pp.473–482, 2001.
[87] Arimori, S., Hartley, J. H., Bell, M. L., Oh, C. S., and James, T. D., “‘Tailored’polymers for supported syntheses using boronic acids,” Tetrahedron Letters, Vol.41, pp.10291–10294, 2000.
[88] Murata, K., Ogawa, S., Watanabe, E., Hayashi, Y., and Yamashita, S., “FT-IR measurements of some greenhouse gases in thin film of poly(methyl methacrylate),” Vibrational Spectroscopy, Vol.13, pp.235–240, 1997.
[89] Samal, S., Mohapatra, N. K., Acharya, S., and Dey, R. K., “Chelating resins VII: studies on chelating resins of formaldehyde and furfuraldehyde-condensed phenolic Schiff base derived from 4,4’-diaminodiphenyl-sulphone and o-hydroxyacetophenone,” Reactive and Functional Polymer, Vol.42, pp.37–52, 1999.
[90] Chang, T. C., Wang, Y. T., Hong, Y. S., and Chiu, Y. S., “Effects of inorganic components on the structure and thermo-oxidative degradation of PMMA modified metal alkoxide-EAA complex,” Thermochimica acta, Vol.390, pp.93–102, 2002.
[91] Belfiore, L. A., McCurdie, M. P., and Das, P. K., “Macromolecule-metal complexes: ligand field stabilization and thermophysical property modification,” Polymer, Vol.42, pp.9995–10006, 2001.
[92] Chang, T. C., Wang, Y. T., Hong, Y. S., and Chiu, Y. S., “Organic-Inorganic Hybrid Materials V: Dynamic and Degradation of Poly(methyl methacrylate) Silica Hybrids,” Journal of Polymer Science: Part A: Polymer Chemistry, Vol.38, pp.1972–1980, 2000.
[93] Gad, A. M., El-Dissouky, A., Mansour, E. M., and El-Maghraby, A., “Thermal stability of polymer complexes of acryloyl-p-chlorobenzoic hydrazide with some transition metal chlorides and acetates,” Polymer Degradation and Stability, Vol.71, pp.267–272, 2001.
[94] Gad, A.M., El-Dissouky, A., Mansour, E. M., and El-Maghraby, A., “Thermal stability of poly acryloyl benzoic hydrazide and its complexes with some transition metals,” Polymer Degradation and Stability, Vol.68, pp.153–158, 2000.
[95] Lyman, W. R., and Preuss, A. F., U.S. Patent, 2,813,838(1957).
[96] Smith B. F., Robison T. W., Carlson, B. J., Labouriau, A., Khalsa, G. R. K., Schroeder, N. C., Jarvinen, G. D., Lubeck, C. R., Folkert, S. L., and Aguino, D. I., “Boric Acid Recovery Using Polymer Filtration: Studies with Alkyl Monool, Diol, and Triol Containing Polyethylenimines,” Journal of Applied Polymer Science, Vol.97, pp.1590–1604, 2005.
[97] Akinori, J., Shoji, A., Mikiko, U., Kazunori, Y., and Takanobu, S., “Behavior of chelating having poloyl groups in column mode adsorption of boric acid,” Analytical Sciences, Vol.17, Supplement, pp.i1211–i1214, 2001.
[98] Oi, T., Sonoda, A., Makita, Y., Kanoh, H., Ooi, K., and Hirotsu, T., “Synthesis and Borate Uptake of Two Novel Chelating Resins,” Industrial and Engineering Chemistry Research, Vol.41, pp.133–138, 2002
[99] Mondal, S., Bhattacharya, D., and Banthia, A. K., “Hard-faced glass fiber: synthesis and characterization,” Materials Letters, Vol.44, pp.113–118, 2000.
[100] Gouin, X., Grange, P., Bois, L., L’Haridon, P., and Laurent, Y., “Character- ization of the nitridation process of boric acid,” Journal of Alloys and Compounds, Vol.224, pp.22–28, 1995.
[101] Lin, Y., Gao, J., and Zhang, R., “Thermal properties and stability of boron-containing phenol-formaldehyde resin formed from paraform- aldehyde,” Polymer Degradation and Stability, Vol.77, pp.495–501, 2002.
[102] Yoon, C. O., Reghu, M., Moses, D., Cao, Y., and Heeger, A. J., “Transports in blends of conducting polymers,” Synthetic Metals, Vol.69, pp.255–258, 1995.
[103] Pron, A., and Laska, J., “Conductivity of blends of polyaniline with PMMA and cellulose acetate: aging studies,” Synthetic Metals, Vol.101, p.p.720-721, 1999.
[104] Wessling, B., Kahol, P. K. Raghunathan, A., and McCormick, B. J. “ESR and magnetic susceptibility studies of polyaniline and its blend with poly (methyl methacrylate),” Synthetic Metals, Vol.119, pp.197–198, 2001.
[105] Cho, M. S., Cho, Y. H., Choi, H. J., and Jhon, M. S., “Synthesis and Electro- rheological Characteristics of Polyaniline-Coated Poly(methyl methacrylate) Microsphere: Size Effect,” Langmuir, Vol.19, pp.5875–5881, 2003
[106] P.K. Kahol, “Magnetic susceptibility and electron spin resonance investigations of polyaniline and polyaniline-poly(methyl methacrylate) blend,” Solid State Communications, Vol.117, pp.37–39, 2001.
[107] Moon, H. S., and Park, J. K., “Structural effect of polymeric acid dopants on the characteristics of doped polyaniline composites: Effect of hydrogen bonding,” Journal of Polymer Science: Part A: Polymer Chemistry, Vol.36, pp.1431–1439, 1998.
[108] Chen, S. A., and Lee, H. T., “Structure and Properties of Poly(acry1ic acid)-Doped Polyaniline,” Macromolecules, Vol.28 pp.2858–2866, 1995.
[109] Rao, P. S., Subrahmanya, S., and Sathyanarayana, D. N., “Synthesis by inverse emulsion pathway and characterization of conductive polyaniline– poly(ethylene-co-vinyl acetate) blends,” Synthetic Metals, Vol.139, pp.397–404, 2003.
[110] Hu, H., Cadenas, J. L., Saniger, J. M., and Nair, P. K., “Electrically Conducting Polyaniline-Poly(acrylic acid) Blends,” Polymer International, Vol.45, pp.262– 270, 1998.
[111] Lee, Y. M., Nam, S. Y., and Ha, S.Y., “Prevaporation of water/isopropanol mixtures through polyaniline membranes doped with poly(acrylic acid),” Journal of Memerane Science, Vol.159, pp.41–46, 1999.
[112] Athawale, A. A., Kulkarni, M. V., and Chabukswar, V. V., “Studies on chemically synthesized soluble acrylic acid doped polyaniline,” Materials Chemistry and Physics, Vol.73, pp.106–110, 2002.
[113] Houz´e, E., and Nechtschein, M., “ESR in conducting polymers: Oxygen- induced contribution to the linewidth,” Physical Review B, Vol.53, pp.14309– 14318, 1996.
[114] Anand, J., Palaniappan, S., and Sathyanarayana, D. N., “Variable-Temperature EPR and Transport Studies on Poly(4,4’-methylenedianiline): Evidence for Bipolarons,” Journal of Physical Chemistry, Vol.99, pp.10324–10328, 1995.
[115] Chang, T. C., Shih, C. C., Yin, C. P., Chen, H. B., and Wu, T. R., “Characterization of Hydrophilic Poly(methyl methacrylate)s Containing Iminodiacetic Acid and Their Complexes,” Polymer Degradation and Stability, Vol. 87, pp. 87–94, 2005.
[116] Dong, H., Nyame, V., MacDiarmid, A. G., and Jones W., “Polyaniline/ Poly(methyl methacrylate) Coaxial Fibers: The Fabrication and Effects of the Solution Properties on the Morphology of Electrospun Core Fibers,” Journal of Polymer Science Part B: Polymer Physics, Vol.42, pp.3934–3942, 2004.
[117] Kahol, P. K., and Pinto, N. J., “An EPR Investigation of Electron Poly- aniline-polyethylene Oxide Blends,” Synthetic Metals, Vol.140, pp.269–272, 2004.
[118] Pinto, N. J., Kahol, P. K., McCormick, B. J., Dalal, N. S., and Wan, H., “Charge transport and electron localization in polyaniline derivatives,” Physical Review B, Vol.49, pp.13983–13986, 1994.
[119] Srinivasan, D., Natarajan, T. S., Rangarajan, G., Bhat, S. V., and Wessling, B., “Electron spin resonance absorption in organic metal polyaniline and its blend with PMMA,” Solid State Communications, Vol.110, pp.503–508, 1999.
[120] Jeevananda, T., Siddaramaiah, Seetharamu, S., Saravanan, S., and D’Souza, L., “Synthesis and Characterization of Poly(aniline-co-acrylonitrile) Using Organic Benzoyl Peroxide by Inverted Emusion Method,” Synthetic Metals, Vol.140, pp.247–260, 2004.
[121] Lin, H. K., Shih, C. C., Wang, G. P., Wu, T. R., Wu, K. H., and Chang, T. C., “EPR studies of polyaniline with Poly(methyl methacrylate-co-glycidyl methacrylate iminodiacetic acid),” Synthetic Metals, Vol.151, pp.256–260 2005.
[122] Raber, J.F., Experimental Methods in Polymer Chemistry; Physical Principal and Applications, John Wiley & Sons, New York, 1980.
[123] Tourillon, G. Gourier, D., Garnier, P., and Vivien, D., “Electron Spin Resonance Study of Electrochemically Generated Poly(thiophene) and Derivatives,” Journal of Physical Chemistry, Vol.88, p.1049, 1984.
[124] Luthra, V., Singh, R., and Gupta, S. K., “Mechanism of DC Conduction in Polyaniline Doped with Sulfuric Acid,” Current Applied Physics, Vol.3, pp.219–222, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top