跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝紀偉
研究生(外文):Hsieh Chi-Wei
論文名稱:含單氟及雙氟磷酸酯類及環胺類之合成應用研究
指導教授:蔡厚仁林家立林家立引用關係
指導教授(外文):Tsai Hou-JenLin Gia-Lih
學位類別:博士
校院名稱:國防大學中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:147
中文關鍵詞:單氟磷酸酯類雙氟磷酸酯類Michaelis-Arbuzov 反應Suzuki 偶合反應環胺類籠狀物乙醯膽鹼酯酵素
外文關鍵詞:Monofluorine-containing phosphonatesDifluorine-containing phosphonatesMichaelis-Arbuzov reactionSuzuki reactionCageaminesAcetylcholinesterase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先合成 (EtO)2P(O)CFHPh、(EtO)2P(O)CFHCO2Et 及 (i-C3H7O)2P(O)CFHCO2Et 三種單氟磷酸酯類化合物作為起始物,在鹼性條件下,將其先與 CF3C(O)OSiMe3 進行親核性加成反應形成 [CF3C(O)CFPh]-Li+ 及 [CF3C(O)CFCO2Et]-Li+ 離子後,再分別與各式不同的鹵烷類 RX (R = H-、CH3-、CH2=CHCH2-) 進行親核性取代反應,合成一系列含有四個氟原子的三氟甲基氟苄基酮類 (CF3C(O)CFRPh) 及 2,4,4,4-四氟乙醯乙酸乙酯類 (CF3C(O)CFRCO2Et) 產物,本研究並針對可能之反應機構提出研究探討。
在雙氟磷酸酯類研究方面,本實驗以三氟氯乙烯 (F2C=CFCl) 為起始物,與氯化苯基二甲基矽 (PhMe2SiCl)、氯化三甲基矽 (Me3SiCl) 及氯化三乙基矽 (Et3SiCl) 進行矽化反應後,再與四氫鋁化鋰 (LiAlH4) 反應,製備出反式-1,2-二氟-1-矽基乙烯 (Trans-HFC=CFSiR3)。鹼性條件下將反式-1,2-二氟-1-苯基二甲基矽基乙烯 (Trans-HFC=CFSiMe2Ph) 與各式三價磷試劑 R2PCl 進行醯化反應獲得反式-1,2-二氟-1-苯基二甲基矽基-2-磷基乙烯 (Trans-R2PFC=CFSiMe2Ph) 三價磷中間體,在不需分離情況下可直接以氧化劑將三價磷氧化成五價磷化合物,成功的製備一系列含雙氟磷酸酯烯類之反式-1,2-二氟-1-苯基二甲基矽基-2-磷酸酯基乙烯 (Trans-R2P(O)FC=CFiMe2Ph)。本研究將所合成出的反式-1,2-二氟-1-苯基二甲基矽基-2-磷酸酯基乙烯以氟化鉀 / 水進行去矽基加氫反應,製得一系列反式-1,2-二氟-2-磷酸酯基乙烯 (Trans-R2P(O)FC=CFH) 化合物,進一步在光敏劑 (Ph2S2) 下進行光化學反應,成功將反式化合物 (Trans-(EtO)2P(O)FC=CFH) 轉變成高比例的順式-1,2-二氟-2-磷酸酯基乙烯。

另外,本研究也從三氟氯乙烯 (F2C=CFCl) 為起始物經由苯基二甲基矽三氟乙烯 (F2C=CFSiMe2Ph) 及三丁基錫三氟乙烯 (F2C=CFSnBu3) 製備出三氟碘乙烯 (F2C=CFI),將其與亞磷酸三異丙酯 ((i-C3H7O)3P) 進行 Michaelis-Arbuzov 反應,合成出反式-1,2-二氟-1-碘基-2-磷酸酯基乙烯 (Trans-(i-C3H7O)2P(O)FC=CFI) 化合物,並在鈀為催化劑下與苯硼酸試劑 (ArB(OH)2) 進行 Suzuki 偶合反應,成功合成反式-1,2-二氟-1-苯基-2-磷酸酯基乙烯 (Trans-(i-C3H7O)2P(O)FC=CFAr) 化合物。
在環胺類的合成與應用方面,本研究將苄胺、2-氯苄胺及 3,4-次甲二氧基苄胺及 3-三氟甲基苄胺在氰甲烷為溶劑,甲酸為催化劑條件下分別與乙二醛進行縮合反應獲得環胺類籠狀物 HBIW、HCIW、HPIW 及 HTIW 化合物。本研究探討這些環胺類化合物作為乙醯膽鹼酯酵素 (Acetylcholinesterase) 的抑制機理,從抑制劑的反應速率常數 (k2)、抑制劑常數 (KI) 及總抑制常數 (ki) 的動力學實驗數據,發現抑制效果依序為 HCIW > HPIW > HBIW。主要原因是 HCIW 氯基為拉電子基且立體障礙較小,使苯環的正電性變強,與酵素過渡態的交互作用力增加,易與酵素結合形成穩定的四面體中間體結構,導致 HCIW 有最佳抑制效果。
Addition of trimethylsilyl trifluoroacetate (CF3C(O)OSiMe3) to the carbanions of monofluorine-containing phosphonates such as -fluorobenzylphosphonate [(EtO)2- P(O)CFPh]-Li+、diethyl (fluorocarbethoxymethyl)phosphonate [(EtO)2P(O)CF- CO2Et]-Li+ and diisopropyl (fluorocarbethoxymethyl)phosphonate [(i-C3H7O)2P(O)- CFCO2Et]-Li+ formed the corresponding intermediates [CF3C(O)CFPh]-Li+ and [CF3C(O)CFCO2Et]-Li+, respectively. Subsequent protonation, alkylation or allylation afforded trifluoromethyl fluorobenzyl ketones (CF3C(O)CFRPh) and ethyl 2,4,4,4-tetrafluoroacetoacetates (CF3C(O)CFRCO2Et). Based on the obtained results, a plausible mechanism was proposed.
The preparations and applications of difluorine-containing phosphonates are also carried out in this research. Trans-HFC=CFSiMe2Ph was prepared from the reaction of chlorotrifluoroehylene (F2C=CFCl) with chlorodimethylphenylsilane (SiMe2PhCl) and lithium alumiun hydride (LiAlH4). Acylation of the lithium salt of trans-HFC=CFSiMe2Ph with R2PCl gave trans-R2PFC=CFSiMe2Ph which subsequent oxidation with hydrogen peroxide afforded a series of trans- R2P(O)FC=CFSiMe2Ph in good yields. Protodesilylation of trans-R2P(O)- FC=CFSiMe2Ph in presence of potassium fluoride in water gave the corresponding trans-R2P(O)FC=CFH. Isomerization of trans-(EtO)2P(O)FC=CFH with ultraviolet light and catalytic amounts of diphenyl disulfide (Ph2S2) resulted in a high yield and stereoselective preparation of phosphono-containing cis-(EtO)2P(O)FC=CFH.
On the other hand, the Michaelis-Arbuzov reaction of iodotrifluoroethylene (F2C=CFI) with triisopropyl phosphate ((i-C3H7O)3P) gave trans-(i-C3H7O)2P(O)- FC=CFI. Iodotrifluoroethylene (F2C=CFI) was propared by using chlorotritri- fluoroethylene (F2C=CFCl) as starting material and then via phenyldimethyl- silyltrifluoroethylene (F2C=CFSiMe2Ph)、tributyltintrifluoroethene (F2C=CFSnBu3). Furthermore, the palladium catalyzed cross-coupling reaction of trans- (i-C3H7O)2P(O)FC=CFI with organoboranes (ArB(OH)2) proceeds under Suzuki reaction to give trans-(i-C3H7O)2P(O)FC=CFAr in good yields.
Meanwhile, a series of cageamines were synthesized and applied as the inhibitors in Acetylcholinesterase (AChE). In the presence of a catalytic amount of formic acid, treatment of benzylamine, 4-chlorobenzylamine, piperonylbenzylamine and 3-trifluoromethylbenzylamine with glyoxal achieved HBIW, HCIW, HPIW and HTIW, respectively. These precursors were used as the inhibitors of AChE enzyme. Based on the rate constant (k2), inhibitory constant (KI) and biomolecular rate constant (overall inhibitory constant, (ki)), our research found that HCIW (HCIW > HPIW > HBIW) was the most effective inhibitor for AChE. The possible reasons were that chlorine atom had less bulky and higher electronegativity which resulted in the easy formation of HCIW with enzyme to a stable tetrahedral intermediate that caused the HCIW was the best inhibitor among the cageamines.
誌謝 ii
摘要 iii
ABSTRACT v
目錄 vii
表目錄 x
圖目錄 xi
1. 諸 論 1
1.1 研究動機及目的 1
1.2 研究架構及方法 8
1.2.1 單氟磷酸酯類之合成及應用研究 8
1.2.2 雙氟磷酸酯類之合成及應用研究 10
1.2.3 環胺類籠狀物合成及其在酵素抑制劑之研究 13
2. 實驗部份 16
2.1 實驗藥品 16
2.2 實驗儀器 20
2.3 實驗步驟 21
2.3.1 (EtO)2P(O)CH(OH)Ph 合成 21
2.3.2 (EtO)2P(O)CFHPh 合成 22
2.3.3 CFHClCF2OEt 合成 23
2.3.4 CFHClCO2Et 合成 23
2.3.5 (EtO)2P(O)CFHCO2Et 合成 24
2.3.6 (i-C3H7O)2P(O)CFHCO2Et 合成 25
2.3.7 CF3C(O)CFHCO2Et 合成 25
2.3.8 CF3C(O)CF(CH3)CO2Et 合成 26
2.3.9 CF3C(O)CF(CH2CH=CH2)CO2Et 合成 27
2.3.10 CF3C(O)CFHPh 合成 27
2.3.11 CF3C(O)CF(CH3)Ph 合成 28
2.3.12 CF3C(O)CF(CH2CH=CH2)Ph 合成 28
2.3.13 (i-C3H7O)2P(O)CF(C(O)CF3)CO2Et 與 KOSiMe3 合成 29
2.3.14 F2C=CFSiMe2Ph 合成 29
2.3.15 F2C=CFSiMe3 合成 30
2.3.16 F2C=CFSiEt3 合成 31
2.3.17 HFC=CFSiMe2Ph 合成 32
2.3.18 由 (EtO)2P(O)Cl 試劑合成反式-(EtO)2P(O)FC=CFSiMe2Ph 33
2.3.19 反式-(EtO)2PFC=CFSiMe2Ph 及反式-(EtO)2P(O)FC=CFSiMe2Ph 合成 33
2.3.20 反式-(Ph)2PFC=CFSiMe2Ph 及反式-(Ph)2P(O)FC=CFSiMe2Ph 合成 35
2.3.21 反式-(Et2N)2PFC=CFSiMe2Ph 及反式-(Et2N)2P(O)FC=CFSiMe2Ph 合成 36
2.3.22 反式-(cyc-C6H11)2PFC=CFSiMe2Ph 及反式-(cyc-C6H11)2P(O)FC=CFSiMe2Ph 合成 37
2.3.23 反式-(EtO)2P(O)FC=CFH 合成 38
2.3.24 反式-(Ph)2P(O)CF=CFH 合成 39
2.3.25 反式-(Et2N)2P(O)FC=CFH 合成 40
2.3.26 反式-(cyc-C6H11)2P(O)FC=CFH 合成 41
2.3.27 順式-(EtO)2P(O)FC=CFH 合成 41
2.3.28 F2C=CFSnBu3 合成 42
2.3.29 F2C=CFI 合成 43
2.3.30 雙氟磷酸酯類反式-(i-C3H7O)2P(O)FC=CFI 合成 43
2.3.31 雙氟磷酸酯類反式-(i-C3H7O)2P(O)FC=CFAr 合成 44
2.3.32 製備 HBIW (Hexabenzylhexaazaisowurtzitane) 45
2.3.33 製備 HCIW (Hexa-(4-chlorobenzyl)hexaazaisowurtzitane) 46
2.3.34 製備 HPIW (Hexapiperonylhexaazaisowurtzitane) 46
2.3.35 製備 HTIW (Hexa-3-(trifluoromethylbenzyl)hexaazaisowurtzitane) 46
2.3.36 乙醯膽鹼酯酵素實驗 47
3. 結果與討論 48
3.1 單氟磷酸酯類之合成 48
3.2 單氟磷酸酯類應用研究 55
3.3 雙氟磷酸酯類之合成 59
3.4 雙氟磷酸酯類應用研究 72
3.5 三氟碘乙烯的製備 73
3.6 (i-C3H7O)2P(O)FC=CFI 的製備 77
3.7 Suzuki 偶合反應研究 78
3.8 環胺類籠狀物之製備及作為乙醯膽鹼酯酵素抑制劑研究 79
4. 結論 84
參考文獻 86
發表著作 95
自傳 97
附錄 98
[1]Liu, R. S. H., Matsumoto, H., Asato, A. E., Denny, M., Shichida,Y., Yoshizawa, T. and Dahlquist, F. W.,“Synthesis and Properties of 12-Fluororetinal and 12-Fluororhodopsin. A Model System for 19F NMR Studies of Visual Pigments,” Journal of the American Chemical Society. Vol. 103, pp. 7195-7201, 1981.
[2]John, F. L. and William, B. H.,“Teflon Tetrafluoroethylene Resin Dispersion : A New Aqueous Colloidal Dispersion of Polytetrafluoroethylene,” Industrial & Engineering Chemistry, Vol. 44, No. 8, pp.1800-1805, 1952.
[3]Vercellotti, G. M., Hammerschmidt, D. E., Craddock, P. R. and Jacob H. S.,“Activation of Plasma Complement by Perfluorocarbon Artificial Blood: Probable Mechanism of Adverse Pulmonary Reactions in Treated Patients and Rationale for Corticosteroid Prophylaxis,” Blood, Vol. 59. pp. 1299-1304, 1982.
[4]汪丰云,“血液化學”,化學教育,第五期,第10-13頁,2006。
[5]Robert, R. and Joanne S.,“Emulsionsof Perfluorinated Compounds for Use in Quality Controlof Blood Gas Analyses,” Clin.Chem., Vol. 28/6. pp. 1293-1296, 1982.
[6]Carethers, J. M., Smith, E., Behling, C. A., Nguyen, L., Tajima, A., Doctolero, R. T., Cabrera, B. L., Goel, A., Arnold, C. A., Miyai, K. and Boland, C. R.,“Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer,” Gastroenterology, Vol. 126, pp. 394-401, 2004.

[7]Córdoba-Díaz, M., Córdoba-Borrego, M., Córdoba-Díaz, D., “Modification of fluorescent properties of norfloxacin in the presence of certain antacids,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 18, pp. 565-571, 1998.
[8]Shen, Y. C. and Ni, J. H.,“The Reaction of Organozinc Reagents with Trifluoroacylated Phosphonates : Synthesis of Trifluoromethylated α,β-Unsaturated Esters with an Active Methylene Moiety,”Heteroatom Chemistry, Vol. 15, PP. 289-292, 2004.
[9]Barua, A. B. and Olson, J. A.,“Synthesis of 4,4-difluoro analogs of retinoland retinoic acid,” Journal of Lipid Research, Vol 25, pp. 304-309, 1984.
[10]Nair, H. K. and Burton, D. J.,“Novel Diakyl (-Halotetrafluoroethyl)- phosphonate : Facile Synthesis via Thermally and Photochemically Induced Radical Reactions. A Unique Photochemical Transformation of BrCF2CF2I,” Journal of the American Chemical Society, Vol. 116, pp. 6041-6042, 1994.
[11]Tsai, H. J., Thenappan, A. and Burton, D. J.,“A Novel Intramolecular Horner-Wadsworth-Emmons reaction; A Simple and General Route to -Fluoro--unsaturated Diesters,” Journal of Organic Chemistry, Vol. 59, pp. 7085-7091, 1994.
[12]Thenappan, A. and Burton, D. J.,“Reduction-Olefination of Esters: A New and Efficient Synthesis of -Fluoro -Unsaturated Esters,” Journal of Organic Chemistry, Vol. 55, pp. 4639-4642, 1990.
[13]Shen, Y. C. and Zhang, Z. H.,“HMPA Promoted Sequential Transformations of Phosphonates. Highly Stereoselective Synthesis of E)-4-Ethoxycarbonyl-c; d-unsaturated Nitrilesy,” J. Chem. Research (S), pp. 556-557, 1999.
[14]Sano, Shigeki.; Teranishi, R. and Nagao, Y.,“Towaed (Z)-selective Horner-Wadsworth-Emmons reaction of aldehydes with 2-fluoro-2-diethyl- phosphonoacetic acid,” Tetrahedron Letters, Vol. 43, pp. 9183-9186, 2002.
[15]Deng, G. S. and Liu, C. Y.,“One-pot Approach to the Converse of Alcohol into ,-Halo--unsaturated Esters,” Chinese Chemical Letters, Vol. 17, No. 3, pp. 329-332, 2006.
[16]McFarland, M. J., Beck, M., Harper, S.and Deshmuck, K., “Anoxic treatment of trifluralin-contaminated soil,” Journal of Hazardous Materials, Vol. 50, pp. 129-141, 1996,
[17]Chui, V. W. D., Wong, K. W. and Tsoi, K.W., “Control of mosquito larvae (diptera: culicidae) using Bti and teflubenzuron: laboratory evaluation and semi-field test,” Environment International, Vol. 21, pp. 433-440, 1995.

[18]趙玉芬,趙國輝,麻遠,磷與生命化學,清華大學出版社,中國北京,第139頁,2005。
[19]蔡厚仁,林生財,何子萬,汪成彬,李進昌,張章平,楊遠威,化學防護,中正理工學院,1998。
[20]Shih, T. M., McDonough, JR. and John, H.,“Organophosphorus Nerve Agents-Induced Seizures and Efficacy of Atropine Sulfate as Anticonvulsant Treatment,” Pharmacology Biochemistry & Behavior, Vol. 64, pp. 147-153, 1999.

[21]Zhou, H. X., Wlodek, S. T., and McCammon, J. A.,“Conformation gating as a mechanism for enzyme specificity,” Proc. Natl. Acad. Sci.,Vol. 95, pp. 9280-9283, 1998.
[22]Hachiro, S.,“Structure-activity relationships of acetylcholinesterase inhibitors : Donepezil hydrochloride for the treatment of Alzheimer's Disease,” Pure Appl. Chem., Vol. 71, pp. 2031-2037, 1999.
[23]Saxena, A., Fedorko, J. M., Vinayaka, C. R., Medhekar, R., Radic´, Z., Taylor, P., Lockridge, O., and Bhupendra, P.,“Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases,” Eur. J. Biochem., Vol. 270, pp. 4447-4458, 2003.
[24]Lin, G. L., Liao, W. C., Chan, C. H., Wu, Y. H., Tsai, H. J. and Hsieh, C. W.,“Quantitative Structure-Activity Relationships for the Pre-Steady State Acetylcholinesterase Inhibition by Carbamates,” Journal of Biochem Molecular Toxicology, Vol. 18, pp. 353-360, 2004.
[25]蔡厚仁、何子萬、丁自豪、劉明哲、 李進興、許龍池,“籠狀高能物 HNIW 合成”,化學,第六十一期,第199-207頁,2003。
[26]Tsai, H. J. and Hsieh, C. W., “Tetrafluorine-containing Ketones and Acetoacetates : Synthesis and Mechanistic Study”, Journal of the Chinese Chemical Society, Vol. 54, pp. 1-9, 2007.
[27]Tsai, H. J., Hsieh, C. W. and Wu, S. C., “A Facile Protocol For The Convenient Preparation of Phosphino And Phosphono Containing Trans-1,2-Difluoro- vinylsilanes”, Phosphorus, Sulfur, and Silicon and the Related Elements, Vol. 182, pp. 491-501, 2007.
[28]Nielsen, A. T., Nissan, R. A. and Vanderah, D. J.,“Polyazapolycyclics by Condensation of Aldehydes with Amines. 2. Formation of 2,4,6,8,10,- 12-Hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05.9.03.11]dodecanes from Glyoxal and Benzylamines,” Journal of Organic Chemistry, Vol. 55, pp. 1459-1466, 1990.
[29]Tsai, H. J., Hsieh, C. W., Lin, G. L. and Liu, M. J., “Preparation the Precursors of CL-20 High Energetic Material as Inhibitors of AchE and BchE”, Journal of Explosives and Propellants, R. O. C., Vol. 23, pp. 15-24, 2007.
[30]Chiou, S. Y., Lai, C. Y., Lin, L. Y. and Lin, G. L.,“Probing stereoselective inhibition of the acyl binding site of cholesterol esterase with four diastereomers of 2'-N-α-methylbenzylcarbamyl-1, 1'-bi-2-naphthol,” BMC Biochemistry, pp. 6-17, 2005.
[31]Tsai, H. J.,“Synthesis of Phenyl substituted fluoro-olefins,” Tetrahedron Letters, Vol. 37, pp. 629-632, 1996.
[32]Tsai, H. J., Lin, K. W., Ting, T. H. and Burton, D. J.,“A General and Efficient Route for the Preparation of α-Phenyl Substituted Vinyl Fluorides,” Helvetica Chimica Acta, Vol. 82, pp. 2231-2239, 1999.
[33]Middleton, W. J., “Adventures of a Fluorine chemist at DuPont,” Journal of Fluorine Chemistry, Vol. 100, pp. 207-216, 1999.
[34]Sabrina, B. F., “Diethylaminosulfur Trifluoride (DAST),” SYNLETT, No. 7, pp. 1130-1131, 2006.
[35]Anilkumar, R. and Burton, D. J.,“A highly efficient room temperature non organometallic route for the synthesis of -trifluorostyrenes by dehydrohalogenation,” Tetrahedron Letters. Vol. 44, pp. 6661-6664, 2003.
[36]Waschbusch, R., Carren, J. and Savignac, P.,“A high yielding synthesis of diethyl 1-fluoromethylphosphonatein pure form,” Organic and Organicmetalic Synthesis, Vol. 2, pp. 49-52, 1998.
[37]Tsai, H. J., “Application of fluorocarbethoxy-substituted phosphonate : A facile entry to substituted 2-fluoro-3-oxoesters,” Phosphorus, Sulfur, and Silicon and the Related Elements, Vol. 126, pp. 1-10, 1997.
[38]Mourad, S., Luc, L. and Charles, M., “Synthesis of Di- and Triphosphate Ester Analogs via a Modified Michaelis-Arbuzov Reaction,” Tetrahedron Letters, Vol. 36, pp. 5183-5186, 1995.
[39]Harry, R. H. and Lubomira, P., “Some new observations on an old reaction: disproportionation and the formation of P-O-P intermediates in the Michaelis-Arbuzov reaction of triaryl phosphites with alkyl halides,” ARKIVOC, Vol. ix, pp. 19-33, 2004.
[40]Valery, M. D., Abed, A. A. A. Q., Abdullah, H. Y. and Morris, S., “Recent Synthesis and Transformation of Vinylphosphonates,” Mini-Reviews in Organic Chemistry, Vol. 2, pp. 91-109, 2005.
[41]Hiyama, T., Nishide, K. and Obayashi, M., “Practical Synthesis and Polymerization of Trifluorovinylsilanes. A Possible Precusor of Poly- (Difluoroacetylene),” Chemistry Letters, Vol. 229, pp. 1765-1768, 1984.
[42]Normant, J. F., “Synthesis of selectively fluorinated substrates via organometallic reagents derived from CF2=CFCl, CF2=CCl2, CF2=CH2,” Journal of Organometallic Chemistry, Vol. 400, pp. 19-34, 1990.
[43]Hanamoto, T., Harada, S., Shindo, K. and Kondo, M.“Fluoride ion-initiated -fluorovinylation of carbonyl compounds with-fluorovinyldiphenyl- methylsilane,” Chem. Commun., pp. 2397-2398, 1999.
[44]Martinet, P., Sauvetre, R. and Normant, J. F.,“Preparation et reactivite de Et3SiCF=CFM (M=Li, ZnBr),” Journal of Organometallic Chemistry, Vol. 367, pp. 1-10, 1989.
[45]Jairaj, V. and Burton, D. J., “Preparation of 1,1,2-trifluoro-2-trimethyl- silylethylene,” Journal of Fluorine Chemistry, Vol. 121, pp. 75-77, 2003.
[46]Kvicale, J., Harbal, R., Czernek, J., Bartosova, I., Paleta, O. and Pelter, A.,“Low-temperature 19F NMR spectroscopy of 1-fluoro-1-lithioethenes. Stability, shifts and unexpected coupling constants,” Journal of Fluorine Chemistry, Vol. 113, pp. 211-218, 2002.
[47]Martin, S., Sauvetre, R. and Normant, J. F.,“Synthesis de Difluoroolefines- Trans,” Tetrahedron Letters, Vol. 24, pp. 5615-5618, 1983.
[48]Souzya, R., Ameduria, B., Boutevina, B. and Virieux, David., “Synthesis of new aromatic perfluorovinyl ether monomers containing phosphonic acid functionality,”Journal of Fluorine Chemistry, Vol. 125, pp. 1317-1324, 2004.
[49]Kilian, P., Slawin, A. M. Z. and Woollins, J. D.,“A structural study of 1,8-bis(dimethyl phosphonito) naphthalene and related crowded chalcogeno derivatives,” Dalton Trans, pp. 3876-3885, 2003.
[50]Peng,W. M., Shreeve, J. M.,“Rapid and high yield oxidation of phosphine, phosphite and phosphinite compounds to phosphine oxides, phosphates and phosphinates using hypofluorous acid-acetonitrile complex,” Journal of Fluorine Chemistry, Vol. 126, pp. 1054-1056, 2005.
[51]Coe, P. L., “Polyfluorovinyl lithium reagents and their use in synthesis,” Journal of Fluorine Chemistry, Vol. 100, pp. 45-52, 1999.
[52]Liu, Q. B. and Burton, D. J.,“Stereospecific synthesis of (E)--difluoro- styrenes,” Tetrahedron Letters, Vol. 41, pp. 8045-8048, 2000.
[53]Fontana, S. A., Davis, C. R., He, Y. B. and Burton, D. J.,“The Stereoselective Preparation of cis and trans-1,2-Difluoroethylene Synthons,” Tetrahedron, Vol. 52, pp. 37-44, 1996.
[54]Xu, J. J. and Burton, D. J.,“Stereospecific preparation of symmetrical (1Z,3Z) 2,3-difluoro-1,4-disubstituted-buta-1,3-dienes by the coupling reaction between bis(tributyltin) and high E/Z 1-bromo-1-fluoroalkenes,” Tetrahedron Letters, Vol. 43, pp. 4565-4567, 2002.
[55]Xu, J. J. and Burton, D. J., “Stereospecific preparation of (2E, 4Z)- monofluorodienyl esters by the Heck reaction of high E/Z ratio 1-bromo-1- fluorostyrenes,” Journal of Fluorine Chemistry, Vol. 125, pp. 725-730, 2004
[56]Anilkumar, R. and Burton, D. J., “ The first preparation of theα-iodo- β,β-difluorovinylzinc reagent (CF2=CIZnCl) and a high-yield one-pot synthesis of α-iodo-β,β-difluorostyrenes,” Journal of Fluorine Chemistry, Vol. 126, pp. 457-463, 2005.
[57]Xue, L., Lu, L., Pedersen, S., Liu, Q., Narske, R. and Burton, D. J., “A Novel Stereospecific Route to E and Z-2-Substituted-1,2-Difluoroethenylstannanes,” Tetrahedron Letters, Vol. 37, pp. 1921-1924, 1996.
[58]Suzuki, A., “Cross-coupling reactions via organoboranes,” Journal of Organometallic Chemistry, Vol. 653, pp. 83-90, 2002.
[59]Chen, C., Wilcoxen, K., Strack, N. and McCarthy, J. R.,“Synthesis of Fluorinated Olefins via the Palladium Catalyzed Cross-Coupling Reaction of 1-Fluorvinyl Halides with Organboranes,” Tetrahedron Letters, Vol. 40, pp. 827-830, 1999.
[60]Xu, J. J. and Burton, D. J., “Stereoselective Preparation of (E)-and (Z)-r-Fluorostilbenes via Palladium-Catalyzed Cross-Coupling Reaction of High E/Z Ratio and (Z)-1-Bromo-1-fluoroalkenes,” Journal of Organic Chemistry, Vol. 71, pp. 3743-3747, 2006.
[61]Chen, C., Wilcoxen, K., Huang, C. Q., Strack, N. and McCarthy, J. R., “New methods for the synthesis of fluoroolefins via the palladium catalyzed cross-coupling reaction of 1-fluorovinyl halides with organoboranes and organostannanes,” Journal of Fluorine Chemistry, Vol. 101, pp. 285-290, 2000.
[62]Lin, G. L. and Kao, B. H., “Epoxy Type Inhibitors of Cholesterol Esterase, Acetylcholinesterase, and Butyrylcholinesterase,” Journal of the Chinese Chemical Society, Vol. 47, pp. 397-404, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top