跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 20:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:嚴祖煦
研究生(外文):Yen Tsu-hsu
論文名稱:奈米流中介面現象之分子動力模擬研究
論文名稱(外文):Study of Interfacial Phenomena in Nanofluids by Using Molecular Dynamics Simulations
指導教授:曾培元宋齊有
指導教授(外文):Tzeng, P. Y.Soong, C. Y.
學位類別:博士
校院名稱:國防大學中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:190
中文關鍵詞:奈米流介面現象分子動力模擬
外文關鍵詞:nanofluidsinterfacial phenomenaMolecular Dynamics Simulation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本論文以分子模擬Couette與Poiseuille流動探討奈米/介觀尺度流的固–液介面現象,考慮表面晶格方位、電動力、溫度效應以及流道尺度等因素對介面之影響。
在固體晶格與流體間的交互作用方面,研究中選用了面心立方(fcc)結構之三種晶面方位(111),(100)及(110)作為固體表面,並且在各固體表面下考慮不同流動方位角對流體的影響。結果顯示了流體密度的層化現象會受到固體晶格表面的影響,但不受流動方位角的影響。固體表面晶格以及流動方位角均會影響奈米尺度流體的動態性質,例如滑移長度、速度分布、流率等。此研究結果對於奈米流的特性瞭解以及奈米流的精確控制上均相當重要。
在電動力流的探討方面,本研究以簡化溶液模型探討奈米尺度的壓力驅動電動力流,考慮表面晶格方位以及固流交互作用強度等因素。此一研究以分子的角度來探討諸如zeta電位、流動電流/電壓以及電動力阻滯現象等電動力流特性。研究中討論了不同的交互作用強度下的速度滑移以及庫侖力效應、推導邊界滑移狀況下Poiseuille電動力流的zeta電位與流動電場之解析表示式。研究中並探討不同的介面參數對於奈米電動力流在介面上的影響及其物理機制、流體與離子的層化密度分布現象及其對Stern層的影響。
在溫度效應對於奈米尺度電滲流的研究方面,包括了兩相對固體表面同溫以及不同溫兩種狀況。為了探討不同的粒子重量與尺度,模擬中採用了相同或不同的溶質參數設定。當兩相對固體表面同溫時,從離子密度以及電滲流速兩個方向探討溫度對zeta電位影響的物理機制。此外研究中考慮整體離子濃度、壁面所帶電荷正負號、滑移速度以及離子尺寸等因素對於zeta電位的影響。當兩相對固體表面不同溫時,流道中溫度呈現梯度分布,模擬結果顯示高整體離子密度與低表面溫度都將使得電滲速度降低。研究中並且探討了電滲流速度、溫度以及離子濃度等特性分佈在不同的外加電場以及整體離子濃度等因素影響下的行為。
在最後一部份的多尺度的混合計算中,本研究採用了簡約限制Lagrangian動力法來達到分子動力模擬與連續性方程數值法之間的資料交換,進而探討尺度效應對滑移邊界的影響。相較於前人的混合計算法所模擬之流道高度均小於50 ,本研究將模擬區域寬度範圍擴展至 ( O(10) 到O nm) 的奈米/介觀尺度。此一研究的主要課題包括了:(1)採用新的資料平均法以降低分子模擬資料的震盪幅度、(2)探討適合的分子模擬區與重疊區大小以及(3)探討擴展流道尺度對奈米流動與滑移長度之影響,並且提出一流道尺度與滑移長度間的擬合關係式。
In this study, the nano/meso-scale solid-flow interfacial characteristics are explored by using Molecular Dynamics (MD) simulation, of Couette and Poiseulli flow geometries with considering influences of surface lattice plane, electrokinetics, thermal effects and geometric scale.
As for the wall lattice-fluid interactions, the channel walls of face-centered cubic (fcc) lattice structure with three surface orientations, i.e., (111), (100), and (110), are considered and the fluid behaviors at various flow orientation angles with respect to the lattice structure are investigated. The present results demonstrate that the fluid density layering phenomenon can be influenced by the orientation of wall lattice plane but not by the flow orientation. Whereas both the lattice plane and the flow orientation noticeably affect hydrodynamic characteristics including slip length, velocity profile, and flow rate in nanochannel flows. These results are of significance to understanding of the nanofluidic characteristics and, especially, the applications in various disciplines where an accurate nanoscale flow-rate control is necessary.
The nanoscale pressure-driven flows of a model electrolyte with the presence of electric double layer (EDL) in charged nanochannels are investigated. Effects of surface orientation and wall-fluid interaction parameters are considered. The electrickinetic flow characteristics such as zeta potential, streaming current/potential and electrokinetic retardation are dealt with in an atomistic view. To explore effects of electrokinetic effects, wall-fluid interactions are modulated to attain various degrees of the fluid slippage and the Coulomb force. Analytic expressions for streaming potential field and zeta potential in the Poiseuille flow with the presence of fluid slippage are developed. The results disclose interesting physics about the influences on the nanoscale elelctrokinetic flows. Effects of fluid/charge density layering and the influences on the Stern layer are also investigated.
Thermal effects in nenoscale electroosmotic flows (EOF), including various levels of uniform temperature as well as cross-stream temperature gradient, are investigated. For the cases of uniform temperature, physical mechanisms of temperature-dependent for zeta potential are explored in either view point of velocity profile or ions concentration. Various effects including bulk ion concentration, sign of wall charge, velocity slippage and particle size are considered. When the opposite walls lie at different temperatures, the results demonstrate that high bulk ion concentration or low surface temperature leads to a decrease in EOF velocity. The present study also explores characteristic features of velocity, temperature and ion concentration distributions with variations in external electric field and bulk ion concentration.
In the last part, a hybrid molecular dynamics-continuum simulation with the principle of crude constrained Lagrangian dynamics for data exchange is performed to resolve the scaling effects on the boundary slip. Unlike the smaller channel heights ( H < 50 ) considered in the previous works, this study extends the computational domain to nano/mesoscale channels of heights in the range of or O(10) to O nm. The major concerns are: (1) to alleviate statistic fluctuations so as to improve convergence characteristics of the hybrid simulation; (2) to explore the appropriate sizes of the pure MD region and the overlap region for hybrid MD-continuum simulations; and (3) to investigate the influences of channel height on the predictions of the flow field and the slip length–a slip length correlation is formulated and the effects of channel size on the flow field and the slip length are discussed.
誌謝 ii
摘要 iv
ABSTRACT vi
目錄 viii
表目錄 xii
圖目錄 xiii
符號說明 xviii
1. 緒論 1
1.1前言 1
1.2背景與目的 1
1.3文獻回顧 2
1.3.1 分子動力模擬 2
1.3.2 邊界滑移之分子動力模擬研究 3
1.3.3 電動力效應之分子動力模擬研究 4
1.3.4 分子動力模擬與連體方程式之混合計算 8
1.4研究內容及論文架構 10
2. 分子動力模擬以及微尺度之固-液介面現象簡介 18
2.1分子動力模擬簡介 18
2.1.1粒子間作用勢能模型 19
2.1.2固液介面條件設定 22
2.1.3 MD模擬溫控法簡介 23
2.2滑移現象介紹 25
2.3電動力效應介紹 28
3. 固-液分子作用參數對介面滑移與流動特性之影響 32
3.1問題描述 32
3.2模擬方法 32
3.3研究結果與討論 35
3.3.1模擬程式驗證 35
3.3.2晶面結構對密度分布之影響 36
3.3.3速度分布 38
3.3.4滑移長度 39
3.3.5介面現象以及Poiseuille流率之定性相似 40
3.4 結論 42
4. 奈米尺度下壓力驅動電動力流之探討 64
4.1問題描述 64
4.2電動力流與Poisson-Boltzmann方程式 65
4.3模擬方法 67
4.4結果與討論 70
4.4.1程式驗證 70
4.4.2電雙層的靜態性質 71
4.4.3電雙層的動態性質 74
4.5 結論 81
5. 奈米尺度下溫度對ζ電位影響之探討 98
5.1問題描述 98
5.2模擬環境之設定 99
5.3模擬方法 100
5.4結果與討論 105
5.5 結論 109
6. 具溫度梯度之奈米電滲流研究 123
6.1 問題描述 123
6.2 模擬方法以及環境的設定 123
6.3 結果與討論 125
6.3.1 流場均均分子的模擬結果與討論 125
6.3.2 NaCl之模擬結果與討論 134
6.4 結論 137
7. 固-液介面滑移流之分子動力-連續性方程多尺度混合模擬 144
7.1 問題描述 144
7.2 混合計算法 145
7.2.1 簡約限制Lagrangian動力法在粒子與連體區資料交換之處理方式
....................... 146
7.2.2 連續性區域之方程式與求解 148
7.2.3 MD模擬區域之處理 149
7.2.4 固-液介面處理 150
7.2.5 混合計算法在重疊區域之處理 150
7.3 程式驗證 152
7.4 結果與討論 154
7.4.1 粒子區域大小對混合模擬之影響 154
7.4.2 流道寬度對Couette流動之影響 155
7.4.3 流道寬度對Poiseuille流動之影響 156
7.4.4 流道寬度對滑移長度之影響 157
7.5 結論 158
8. 總結 170
8.1重要結論 170
8.2未來研究方向建議 173
參考文獻 174
附錄A 186
個人著作 191
自傳 193
[1]宋齊有,“微機電系統技術之軍事航太應用,”微機電系統技術與應用,國科會精密儀器發展中心出版,台北,第13.4.1節,pp.1202~1212, 2003。
[2]Stone, H. A., Stroock, A. D. and Ajdari, A., “Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip,” Annual Review of Fluid Mechanics, Vol. 36, pp.381-411, 2004.
[3]Whitesides, G. M., “The Origins and the Future of Microfluidics,” Nature, Vol. 442, pp. 368-373, 2006.
[4]Craighead, H., “Future Lab-on-a-chip Technologies for Interrogating Individual Molecules,” Nature, Vol. 442, pp. 387-393, 2006.
[5]El-Ali, J.,Sorger, P. K. and Jensen, K. F., “Cells on Chips,” Nature, Vol. 442, pp. 403-411, 2006.
[6]Squires, T. M. and Quake, S. R., “Microfluidics: Fluid Physic at the Nanoliter Scale,” Reviews of Modern Physics, Vol. 77, , pp. 977-1026, July, 2005.
[7]Bayraktar, T. and Pidugu, S. B., “Characterization of Liquid Flows in Microfluidic Systems,” International Journal of Heat and Mass Transfer, Vol. 49, pp.815-824, 2006
[8]Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, Clarendon Press, Oxford, 1993.
[9]Rapaport, D. C., The Art of Molecular Dynamics Simulation, Cambridge University Press, 1995.
[10]Haile, J. M., Molecular Dynamics Simulation- Elementary Methods, A Wiley-Interscience Publication, 1992.
[11]Frenkel, D. and Smit, B., Understanding Molecular Simulation, Academic Press, 1996.
[12]Alder, B. J. and Wainwright, T. E., “Phase Transition for a Hard Sphere System,” Journal of Chemical Physics, Vol. 27, pp.1208-1209, 1957.
[13]Maruyama, S., Kurashige, T., Matsumoto, S., Yamaguchi, Y. and Kimura, T., “Liquid Droplet in Contact with a Solid Surface,” Microscale Thermophysical Engineering, Vol. 2, No. 1, pp.49-62, 1998.
[14]Maruyama, S. and Kimura, T., “A Study on Thermal Resistance over a Solid-Liquid Interface by the Molecular Dynamics Method,” Thermal Science Engineering, Vol. 7, No. 1, pp.63-68, 1999.
[15]Kinjo, T. and Matsumoto, M., “Cavitation Processes and Negative Pressure,” Fluid Phase Equilibria, Vol. 144, pp.343-350, 1998.
[16]Levesque, D., Verlet, L. and Kurkijarvi, J., “Computer “Experiment” on Classical Fluids. IV. Transport Properties and Time-Correlation Functions of the Lennard-Jones Liquid Near Its Triple Point,” Physical Review A, Vol. 7, pp.1690-1700, 1973.
[17]Rapaport, D. C., “Molecular-Dynamics Study of Rayleigh-Benard Convection,” Physical Review Letters, Vol. 60, pp.2480-2483, 1988.
[18]Mareschal, M, Mansour, M. M., Puhl, A. and Kestemont, E., “Molecular Dynamics versus Hydrodynamics in a Two-Dinensiional Rayleigh-Benard System,” Physical Review Letters, Vol. 61, pp.2550-2553, 1988.
[19]Given, J. A. and Climenti, E., “Molecular Dynamics and Rayleigh-Benard Convection,” Journal of Chemical Physics, Vol. 90, No. 12, pp.7376-7383, 1989.
[20]Rapaport, D. C., “Time-dependent Patterns in Atomistically Simulated Convection,” Physical Review A, Vol. 43, No. 12, pp. 7046-7048,1991.
[21]Rapaport, D. C., “Unpredictable Convection in a Small box: Molecular Dynamics Experiments,” Physical Review A, Vol. 46, pp.1971-1984, 1992.
[22]Vannitsem, S. and Mareschal, M., “Molecular Dynamics Simulations of Passive Transport in Two-Dimensional Rayleigh-Benard Convection,” Physical Review E, Vol. 51, No.6, pp.5564-5570, 1995.
[23]Koplik, J. and Banavar, J. R., “Continuum Deductions from Molecular Hydrodynamics,” Annual Review Fluid Mechanics, Vol. 27, pp.257-292, 1995.
[24]Thompson, P. A. and Robbins, M. O., “Shear Flow Near Solids: Epitaxial Order and Flow Boundary Conditions,” Physical Review A Vol.41, No.12, pp.6380~6386, 1990.
[25]Thompson, P. A. and Troian, S. M., “A General Boundary Condition for Liquid Flow at Solid Surfaces,” Nature, Vol. 389, pp.360-362, 1997.
[26]Barrat, J. L. and Bocquet, L., “Influence of Wetting Properties on Hydrodynamic Boundary Conditions at a Fluid/Solid Interface,” Faraday Discuss., Vol. 112, pp. 119-127, 1999.
[27]Fan, X.-J., Phan-Thien, N., Yong, N. T. and Diao, X., “Molecular Dynamics Simulation of a Liquid in a Complex Nano Channel Flow,” Physics of Fluids, Vol. 14, No. 3, pp.1146-1153, 2002.
[28]Cottin-Bizonne, C., Barrat, J. L., Bocquet, L. and Charlaix, E., “Low-Friction Flows of Liquid at Nanopatterned Interfaces” ,Nature Materials, Vol.2, april, 2003.
[29]Soong, C.Y., Wang, S. H., and Tzeng, P. Y., “Molecular Dynamics Simulation of Rotating Fluids in Cylindrical Containers,” Physics of Fluids, Vol. 16, No. 8, pp. 2814-2827, 2004
[30]Galea, T. M. and Attard, P. “Molecular Dynamics Study of the Effect of Atomic Roughness on the Slip Length at the Fluid-Solid Boundary during Shear Flow”, Langmuir, Vol. 20, pp. 3477-3482, 2004
[31]Mala, G. M., Li, D. and Dale, J. D., “Heat Transfer and Fluid Flow in Microchannels,” International Journal of Heat and Mass Transfer, Vol. 40, pp.3079-3088, 1997.
[32]Yang, C. and Li, D., “Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels,” Journal of Colloid and Interface Science, Vol. 194, pp.95-107, 1997.
[33]Qian, Y., Yang, G. and Bowen, W. R., “An Algorithm for the Calculation of the Electrical Potential Distribution in a Charged Capillary with General Electrolytes,” Journal of Colloid and Interface Science, Vol. 190, No. 1, pp.55-60, 1997.
[34]Mala, G. M., Yang, C. and Li, D., “Electrical Double Layer Potential Distribution in a Rectangular Microchannel,” Colloids and Surfaces A, Vol. 135, pp.109-116, 1998.
[35]Yang, C., Li, D. and Masliyah, J. H., “Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects,” International Journal of Heat and Mass Transfer, Vol. 41, pp.4229-4249, 1998.
[36]Qu, W. and Li, D., “A Model for Overlapped EDL Fields,” Journal of Colloid and Interface Science, Vol. 224, pp.397-407, 2000.
[37]Li, D., “Electro-Viscous Effects on Pressure-Driven Liquid Flow in Microchannels,” Colloid and Surface A, Vol. 195, pp.35-37, 2001
[38]Hsu, J. P., Kao, C. Y., Tseng, S. and Chen, C. J., “Electrokinetic Flow through an Elliptical Microchannel: Effects of Aspect Ratio and Electrical Boundary Conditions,” Journal of Colloid and Interface Science, Vol. 248, pp.176-184, 2002.
[39]Yang, J. and Kwok, D. Y., “Microfluid Flow in Circular Microchannel with Electrokinetic and Navier’s Slip Condition,” Langmuir, Vol.19, pp.1047-1053, 2003.
[40]Yang, J. and Kwok, D. Y., “Effect of Liquid Slip in Electrokinetic Parallel-plate Microchannel Flow,” Journal of Colloid and Interface Science, Vol.260, pp.225-233, 2003.
[41]Yang, R. J., Fu, L. M. and Hwang, C. C., “Electroosmotic Entry Flow in a Microchannel,” Journal of Colloid and Interface Science, Vol.244, pp.173-179, 2001.
[42]Soong, C. Y. and Wang, S. H., “Theoretical Analysis of Electrokinetic Flow and Heat Transfer in a Microchannel under Asymmetric Boundary Conditions,” Journal of Colloid and Interface Science, Vol.265, pp.202-213, 2003.
[43]Soong, C. Y. and Wang, S. H., “Analysis of Rotation-Driven Electrokinetic Flow in Microscale Gap Region of Rotating Disk Systems,” Journal of Colloid and Interface Science, Vol. 269, No. 2, pp. 484-498, 2004.
[44]Soong, C. Y. Wang, S. H. and Tzeng, P. Y., “Analysis of Fully Developed Forced Convection of Electrokinetic Flow in Flat Microchannels at Prescribedd Wall Temperatures of Wall Heat Fluxs,” Transactions of Aeronautical and Astronautical Society, ROC., Vol. 36, No. 1, pp. 29-44, 2004.
[45]Spohr, E., “Molecular Simulations of the Electrochemical Double Layer,” Electrochimica Acta, Vol. 44, pp.1697-1705, 1999.
[46]Spohr, E., “Molecular Dynamics Simulations of Water and Ion Dynamics in the Electrochemical Double Layer,” Solid State Ionics, Vol. 150, pp.1-12, 2002.
[47]Freund, J. B., “Electro-Osimosis in a Nanometer-Scale Channel Studied by Atomistic Simulation,” Journal of Chemical Physics, Vol.116, No. 5, pp.2194-2200, 2002.
[48]Marry, V., Dufreche, J.-F., Jardat, M. and Turq, P., “Equilibrium and Electrokinetic Phenomena in Charged Porous Media from Microscopic and Mesoscopic Models: Electro-Osmosis in Montmorillonite,” Molecular Physics, Vol. 101, No.20, pp. 3111-3119, 2003.
[49]Zhou, J. D., Cui, S. T. and Cochran, H. D., “Molecular Simulation of Aqueous Electrolytes in Model Silica Nanochannels” Molecular Physics, Vol. 101, No. 8, pp. 1089-1094, 2002.
[50]Cui, S. T. and Cochran, H. D., “Electroosmotic Flow in Nanoscale Parallel-plate Channels: Molecular Simulation Study and Comparison with Classical Poisson-Boltzmann Theory,” Molecular Simulation, Vol. 30, No. 5, pp. 259-266, 2004.
[51]Kim, D. and Darve, E., “Molecular Dynamics Simulation of Electro-osmotic Flows in Rough Wall Nanochannels,” Physical Review E, Vol. 73, pp. 051203, 2006.
[52]Qian R. and Aluru, N. R. “Ion Concentrations and Velocity Profiles in Nanochannel Electroosmotic Flows”, Journal of Chemical Physics, Vol.118 No.10 pp.4692-4701, 2003.
[53]Qian R. and Aluru, N. R. “Multiscale Simulation of Electroosmotic Transport Using Embedding Techniques”, International Journal for Multiscale Computational Engineering, Vol.2 No.2 pp.173-188, 2004.
[54]Qian, R. and Aluru, N. R. “Scaling of Electrokinetic Transport in Nanometer Channels,” Langmuir, Vol.21 No.19, pp.8972-8977, 2005.
[55]Qian, R. and Aluru, N. R., “Charge Inversion and Flow Reversal in a Nanochannel Electro-Osmotic Flow,” Physical Review Letters, Vol.92, No. 10, pp. 198301, 2004.
[56]Qian, R. and Aluru, N. R., “Surface-Charge-Induced Asymmetric Electrokinetic Transport in Confined Silicon Nanochannels,” Applied Physics Letters, Vol. 86, pp.143105, 2005.
[57]Qian, R. “Effects of Molecular Level Surface Roughness on Electroosmotic Flow,” Microfluidics and Nanofluidics, Vol. 3, pp.33-38, 2007.
[58]Thompson, A. P., “Nonequilibrum Molecular Dynamics Simulation of Electro-Osmotic Flow in a Charged Nanopore,” Journal of Chemical Physics, Vol. 119 No. 4 pp. 7503-7511, 2003.
[59]Joly, L., Ybert, C., Trizac, E. and Bocquet, L., “Hydrodynamics within the Electric Double Layer on Slipping Surfaces,” Physical Review Letters, Vol. 93, pp. 257805, 2004.
[60]Joly, L., Ybert, C., Trizac, E. and Bocquet, L., “Liquid Friction on Charged Surfaces: From Hydrodynamic Slippage to Electrokinetics,” Journal of Chemical Physics, Vol. 125 pp. 204716, 2006.
[61]Zhu, W., Singer, S. J., Zheng, Z. and Conlisk, A. T., “Electro-Osmotic Flow of a Model Electrolyte,” Physical Review E, Vol. 71, pp. 041501, 2005.
[62]Brenner, H. and Ganesan, V., “Molecular Wall Effects: Are Conditions at a Boundary “Boundary Condition”? ,” Physical Review E, Vol.61, No.6, pp.6879-6895, 2000.
[63]O’Connel, S. T. and Thompson, P. A., “MD-Continuum Hybrid Computations: a Tool for Studying Complex Fluid Flows,” Physical Review E, Vol.52, No.6, pp.R5792-R5795, 1995.
[64]Li, J., Liao, D. and Yip, S., “Coupling Continuum to Molecular-Dynamics Simulation: Reflecting Particle Method and the Field Estimator,” Physical Review E, Vol.57, No.6, pp.7259-7266, 1998.
[65]Hadjiconstantinou, N. G., “Hybrid Atomistic-Continuum Formulations and the Moving Contact-Line Problem,” Journal of Computational Physics, pp. 245-265,1999.
[66]Hadjicostantinou, N. G., “Combining Atomistic and Continuum Simulations of Contact-Line Motion,” Physical Review E, Vol.59, No.2, pp.2475-2478, 1999.
[67]Werder, T., Walther, J. H. and Koumoutsakos, P., “Hybrid Continuum-Atomistic Method for the Simulation of Dense Fluid Flows,” Journal of Computational Physics, Vol. 205, pp. 373-390, 2005.
[68]Flekkoy, E. G., Wagner G. and Feder, J., “Hybrid Model for Combine Particle and Continuum Dynamics,” Europhysics Letters, Vol.52, No. 3, pp. 271-276, 2000.
[69]Nie, X. B., Chen, S. Y. and Robbins, M. O., “Hybrid Continuum-Atomistic Simulation of Singular Corner Flow,” Physics of Fluids, Vol. 16, No. 10, pp. 3579-3591, 2004.
[70]Delgado-Buscalioni, R. and Coveney, P. V., “Continuum-Particle Hybrid Coupling for Mass, Momentum, and Energy Transfers in Unsteady Fluid Flow” Physical Review E, Vol.67, pp.046704, 2003.
[71]Flekkoy, E. G., Delgado-Buscalioni, R. and Coveney, P. V., “Flux Boundary Conditions in Particle Simulations” Physical Review E, Vol.72, pp.026703, 2005.
[72]Nie, X. B., Robbins, M. O. and Chen, S. Y., “Resolving Singular Forces in Cavity Flow: Multiscale Modeling from Atomic to Millimeter Scales,” Physical Review Letters, Vol. 96, pp. 134501, 2006.
[73]Nie, X. B., Chen, S. Y., E, W. N. and Robbins, M. O., “A Continuum and Molecular Dynamics Hybrid Method for Micro- and Nano-Fluid Flow”, Journal of Fluid Mechanics, Vol.500, pp.55-64, 2004.
[74]Ren, W. and Weinan E., “Herterogeneous Multiscale Method for the Modeling of Complex Fluids and Micro-fluidics,” Journal of Computational Physics, Vol. 204, pp. 1-26, 2005.
[75]Hadjicostantinou, N. G., “Discussion of Recent Developments in Hybrid Atomistic-Continuum Methods for Multiscale Hydrodynamics,” Bulletin of the Polish Academy of Sciences Technical Sciences, Vol.53, No.4, pp.335-342, 2005.
[76]Girifalco L. A. and Weizer, V. G., “Application of the Morse Potential Function to Cubic Metals,” Physical Review, Vol. 114, No.3, pp. 687-690, 1959.
[77]Lincoln, R. C., Koliwad, K. M. and Ghate, P. B., “Morse-Potential evaluation of 2nd and 3rd-order Elastic Constants of Some Cubic Metals,” The Physical Review, Vol. 157, No. 3, pp.463~466, 1967.
[78]Fang, T. H. and Weng, C. I., “Three-Dimensional Molecular Dynamics Analysis of Processing Using a Pin Tool on the Atomic Scale,” Nanotechnology, Vol. 11 pp. 148-153, 2000.
[79]Soong, C.Y., "Electro-Thermo-Hydrodynamic Interactions in Micro Liquid Flows," Keynote Lecture at The 6th International Symposium on Heat Transfer, June 15-19, Beijing, China, 2004.
[80]Lauga, E., Brenner, M. P. and Stone, H. A., “The No-Slip Boundary Condition: a Review,” Handbook of Experimental Fluid Dynamics, Springer ,2005.
[81]Choi, C-H., Westin, K. J. A. and Breuer, K. S., “Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels,” Physical of fluids, Vol.15, pp.2897-2920, 2003
[82]Craig, V. S. J., Neto, C. and Williams, D. R. M., “Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid,” Physical Review Letters, Vol.87, No.5, pp.054504, 2001
[83]Zhu, Y. and Granick, S., “Rate-Dependent Slip of Newtonian Liquid at Smooth Surface,” Physical Review Letters, Vol.87, pp.096105, 2001
[84]Churaev, N. V., Ralston, J., Sergeeva, I. P. and Sobloev, V. D., “Eletrokinetic Properties of Methylated Quartz Capillaries”, Advances in Colloid and Interface Science, Vol. 96, pp.265-278, 2002.
[85]Tretheway, D. C. and Meinhart, C. D., “Apparent Fluid Slip at Hydrophobic Microchannel Walls,” Physical of fluids, Vol.14, pp.L9-L12, 2002.
[86]Lumma, D., Gansen, A., Feuillebois, F., Radler, J. O. and Vinogradova, O. I., “Flow Profile Near a Wall Measured by Double-Focus Fluorescence Cross-Correlation,” Physical Review E, Vol. 67, pp. 056313, 2003.
[87]Venditti, R., Xuan X. and Li D., “Experimental Characterization of the Temperature Dependence of Zeta Potential and Its Effect on Electroosmotic Flow Velocity in Microchannels,” Microfluidics and Nanofluidics, Vol. 2, No.6 pp.493-499, 2006.
[88]Revil A., Pezard P. A. and Glover P. W. J., “Streaming Potentials in Porous Media 1. Theory of the Zeta Potential,” Journal of Geophysical Research, Vol. 104(B9) pp. 20021-20031, 1999.
[89]Revil A., Hermitte D., Spangenberg E. and Cocheme, J. J., “Electrical Properties of Zeolitized Volcaniclastic Materials,” Journal of Geophysical Research, Vol. 107, No.B8, pp. 2168, 2002.
[90]Reppert P. M. and Morgan, F. D., “Temperature-Dependent Streaming Potentials: 1. Theory,” Journal of Geophysical Research, Vol. 108, No. B11, ECV3 pp.1-12, 2003.
[91]Kirby, B. J. and Hasselbrik Jr. E. F., “Zeta Potential of Microfluidic substrates: 1. Theory, Experimental Techniques, and Effects on Separations,” Electrophoresis, Vol. 25, pp. 187-202, 2004.
[92]Maynes, D. and Webb, B. W., “Fully Developed Electro-Osmotic Heat Transfer in Microchannels,” International Journal of Heat and Mass Transfer, Vol. 46, pp.1359-1369, 2003.
[93]Maynes, D. and Webb, B. W., “The Effect of Viscous Dissipation in Thermally Fully-Developed Electro-Osmotic Transfer in Microchannels,” International Journal of Heat and Mass Transfer, Vol. 47, pp.987-999, 2004.
[94]W.D. Kaplan and Y. Kauffmann, “Structural Order in Liquids Induced by Interfaces with Crystals,” Annual Review of Material Research, Vol. 36, pp. 1-48, 2006.
[95]Broughton, J. Q. and Gilmer, G. H., “Molecular dynamics investigation of the crystal-fluid interface. I. Bulk Properties, II. Structure of the fcc(111), (100, (110) Crystal-Vapor Systems, III. Dynamical Properties of fcc Crystal-Vapor Systems,” Journal of Chemical Physics, Vol. 79, pp. 5095-5127, 1983.
[96]Broughton, J. Q. and Gilmer, G. H., “IV. Free Energies of Crystal-Vapor Systems, V. Structure and Dynamics of Crystal-Melt Ssystems, VI. Structure Excess Surface Free Energies of Crystal-Liquid Systems,” Journal of Chemical Physics, Vol. 84(10), pp. 5741-5768, 1986.
[97]Shelley, J. C. and Patey, G. N., “Boundary Condition Effects in Simulations of Water Confined Between Planar Walls,” Molecular Physics, Vol.88, No.2, pp.385-398, 1996.
[98]Heinbuch, U. and Fischer, J., “Liquid Flow in Pores: Slip, No-Slip, or Multilayer Sticking,” Physical Review A, Vol. 40, No. 2, pp. 1144-1146, 1989.
[99]Rapaport, D. C., “Hexagonal Convection Patterns in Atomistically Simulated Fluids,” Physical Review E, Vol. 73, pp. 025301, 2006.
[100]Yeh, I. C. and Berkowitz, M. L., “Ewald Summation for Systems with Slab Geometry,” Journal of Chemical Physics, Vol.111, No.7, pp.3155-3162, 1999.
[101]Behrens, S. H. and Grier, D. G., “The Charge of Glass and Silica Surface,” Journal of Chemical Physics, Vol.115, No.14, pp.6716-6721, 2001.
[102]Stoyanov, S. D. and Groot, R. D., “From Molecular Dynamics to Hydrodynamics: A Novel Galilean Invariant Thermostat,” Journal of Chemical Physics, Vol.122, No.11, pp.114112, 2005.
[103]Xue, L., Keblinski, P., Phillpot, S. R., Choi, S. U.-S. and Eastman, J. A., “Effect of Liquid Layering at the Liquid-Soild Interface on Thermal Transport,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 4277-4284, 2004.
[104]Dang, L. X., “Mechanism and Thermodynamics of Ion Selectivity in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics Study,” Journal of American Chemical Society Vol.117, pp.6954-6960, 1995.
[105]Xu, J. L. and Zhou, Z. Q., “Molecular Dynamics Simulation of Liquid Argon Flow at Platinum Surfaces,”Heat and Mass Transfer, Vol.40, pp. 859-869, 2004.
[106]Lide, D. R. (Ed), CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1994, pp. 6-10.
[107]Hoffmann, K. A. and Chiang, S. T., Computational Fluid Dynamics for Engineers- Volume 1 , Engineering Education System Press, Wichita, KN, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top