跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 11:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳村錦
研究生(外文):Cun-Gin Chen
論文名稱:自動武器系統三維射擊精度數值模擬之研究
論文名稱(外文):3-D Numerical Simulation of Firing Precision of Automatic Weapon Systems
指導教授:孫懷谷孫懷谷引用關係
指導教授(外文):Huai-Ku Sun
學位類別:博士
校院名稱:國防大學中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:136
中文關鍵詞:剛體機構蒙地卡羅法有限元素法射擊精準度
外文關鍵詞:rigid-body mechanismsMonte Carlo methodfinite element methodfiring precision
相關次數:
  • 被引用被引用:9
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究動機係武器研發過程中,需耗費大量人、物及財力從事實驗,進而改進設計以確保性能符合需求;若在設計階段即能預估系統性能,對縮短研發期程與成本將有很大助益。基此,需要一套方法以分析剛體機構搭接在可撓性結構物上全系統之三維動態行為,此方法須結合傳統剛體機構之電腦輔助分析技術及可撓性結構之有限元素分析法兩者為一體。
針對剛體機構運動方程式中之旋轉部分,以尤拉參數推導,並結合可撓性腳架之三維有限元素模型,兩者間以剛性接頭聯結,建立含可撓性腳架之自動武器系統數值動力模型。各機構接頭將建立其限制方程式,並利用拉格蘭吉乘子法,將其納入運動方程式中,最後運用數值積分的方式求解。
利用此數值模型將可探討機槍系統中相關機構運動、腳架變形兩者耦合等現象;再配合質點外彈道理論,模擬發射後彈頭飛行軌跡及落點。接著運用蒙地卡羅法分析因彈藥膛壓之變異性及腳架變形所造成之彈著散佈面。結果發現連續發射時耦合現象對射擊精度影響甚巨。
對研發人員而言,本數值模型首次提供了於初步設計時即可進行全系統性能預測之能力。未來研究方向將分析安裝於車輛載具上自動武器系統之動態行為,並結合殺傷函數以進行射擊效益評估。
The motive of this dissertation is due to the fact that a huge amount of human, material, and financial resources are required to ensure that the performance can meet the requirement during the R&D phase of weapon systems. Predicting and analyzing the performance of the full system, during the engineering design process, will promote the success of the entire system. Therefore, a numerical method is proposed to analyze the 3-dimensional dynamic behavior of a rigid-body mechanism mounted on a flexible support structure. This method must combine the traditional computer-aided analysis of rigid-body mechanisms and finite element method of flexible structure together.
The rotational equation of motion is expressed in terms of Euler parameters and is combined with the 3-D finite element model of the flexible support structure via a rigid joint. The mathematical constraint equations for each joint will be derived and be included into the system’s equation of motion by employing the Lagrange multiplier. Finally, the resulting equation of motion is solved by numerical integration.
This model can be used to analyze the dynamic behaviors of a machine gun system mounted on a flexible mount including the motion of the gun mechanism itself, and the coupling effect between the gun and the mount. The flight trajectory and the impact point of the bullet can be computed by using the exterior ballistic equations. Because of the stochastic characters of the chamber pressure, muzzle vibration, and muzzle velocity of the bullet, Monte Carlo method is employed in this research to predict the dispersion condition. The results reveal that the interaction between the rigid-body mechanisms and its flexible support structures affects performance of whole system greatly.
For the first time, a computer-aided method is provided to the weapon engineers to give them the ability to predict the full system performance in the very early stage of the design process. The dynamic response of the entire system mounted on a moving vehicle and the firing effectiveness analysis combined with killing function will be addressed and studied in the future research works.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 ix
圖目錄 x
符號說明 xiv
1. 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 文獻回顧 3
1.4 章節安排 6
2. 電腦輔助分析理論介紹 8
2.1 剛體系統動態分析簡介 8
2.2 二維座標轉換 9
2.3 尤拉參數(Euler Parameters) 10
2.4 角速度的概念 15
2.5 空間與平面機構常用各式接頭之數學模型及限制方程式 19
2.5.1 平面機構常用之各式接頭 20
2.5.2 空間機構常用各式接頭 23
2.6 剛體機構之位置、速度及加速度分析 28
2.7 剛體機構之運動 29
2.7.1 二維剛體機構之運動方程式 31
2.7.2 三維剛體機構之運動方程式 32
3. 可撓性構架有限元素法 38
3.1 局部座標下二維構架元素之質量矩陣及勁度矩陣 38
3.2 局部座標下三維構架元素之質量矩陣及勁度矩陣 40
3.3 廣域座標系統下二維及三維構架元素之質量矩陣和勁度矩陣 44
3.4 廣域座標系統下構架運動方程式 46
3.5 平面與空間之可撓性構架與剛體機構間結合方法 47
4. 質點彈道理論與射擊精準度介紹 50
4.1 膛外彈道二維及三維質點彈道方程式 50
4.2 區間估計 53
5. 自動武器系統動態模擬分析 58
5.1 二維自動武器系統運動方程式 61
5.2 三維自動武器系統運動方程式 62
5.3 自動武器系統三維模型說明 64
5.4 流程分析 68
5.5 數值模擬 70
5.5.1 對稱系統之動態響應 70
5.5.2 對稱系統之精度與準度 88
5.5.3 加掛彈箱系統之動態響應 102
5.5.4 加掛彈箱系統之精度與準度 114
6. 結論與建議 126
6.1 結論 126
6.2 建議 127
參考文獻 128
附錄 133
個人著作 135
自傳 136
[1] 保榮本、卓穗如,“本世紀輕武器技術創新的回顧與展望”,輕兵器,第1期,第3-8頁,1995。
[2] 卓穗如、保榮本、嚴曉峰,“高技術條件下局部戰爭對輕武器的需求和發展對策”,輕兵器,第2期,第2-4頁,1998。
[3] 卓穗如、保榮本,“我國輕武器技術發展的定位、途徑和資源問題”,輕兵器,第5期,第2-4頁,1995。
[4] 王放明,隨機動力學及其在兵器中的應用,國防工業出版社,北京,第1-110頁,2000。
[5] Nikravesh, P. E., and Chung, I. S., “Application of Euler Parameters to the Dynamic Analysis of Three-Dimensional Constrained Mechanical Systems,” Journal of Mechanical Design, Vol. 104, pp. 785-791, October, 1982.
[6] Nikravesh, P. E., Kwon, O. K., and Wehage, R. A., “Euler Parameters in Computational Kinematics and Dynamics – Part 1,” Journal of Mechanisms, Transmission, and Automation in Design, Vol. 107, pp. 358-365, September, 1985.
[7] Nikravesh, P. E., Kwon, O. K., and Wehage, R. A., “Euler Parameters in Computational Kinematics and Dynamics – Part 2,” Journal of Mechanisms, Transmission, and Automation in Design, Vol. 107, pp. 366-369, September, 1985.
[8] Tan, Q., and Balchen, J. G., “General Quaternion Transformation Representation for Robotic Application,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Part 3 (of 5), pp. 17-20, October, 1993.

[9] Davision, P., Longmore, D.K., and Burrows, C.R., “Efficient modeling of elastic mechanisms using orthogonal Coordinates,” Journal of Mechanical Engineering Science, Vol. 207, pp. 263-272, 1993.
[10]Fjellstad, O. E., and Fossen, T. I., “Position and Attitude Tracking of AUV’s,: A Quaternion Feedback Approach,” IEEE Journal of Oceanic Engineering, Vol. 19(4), pp. 512-518, 1994.
[11]Ambrosio, J. A. C., and Goncalves, J. P.C., “Complex Flexible Multibody Systems with Application to Vehicle Dynamics,” Multibody System Dynamics, Vol. 6(2), pp. 163-182, 2001.
[12]Ikeda, T., Fukaya, M., and Mita, T., “Position and Attitude Control of an Underwater Vehicle Using Variable Constraint Control,” Proceedings of the IEEE Conference on Decision and Control, Vol. 4, pp. 3758-3763, 2001.
[13]劉延柱、馬曉敏,“基于四元數的帶飛輪航天器的自適應姿態控制”,上海交通大學學報,第37卷,第12期,第1957-1960頁,2003。
[14]Yen, J., and Chou, C. C., “Automatic Ggeneration and Numerical Integration of Differential-Algebraic Equations of Multibody Dynamics,” Computer Methods in Applied Mechanics and Engineering, Vol. 104(3), pp. 317-331, May, 1993.
[15]吳洪濤、王春剛、劉延山、劉又午、蔡鶴皋,“四元數在多體系統理論應用中的歸一化問題”,江蘇工學院學報,第15卷,第1期,第19-25頁,1994。
[16]Munteanu, M. G., Ray, P., and Gogu, G., “Method for a Fast and Simple Dynamic Analysis of 2D and 3D Mechanisms,” Multibody System Dynamics, Vol. 11, pp. 63-85, 2004.
[17]Kayuk, Y. F. and Pyatov, A.L., “Motion of a Rigid Body Hinged to a Deformable Rod,” Soviet Applied Mechanics (English Translation of Prikladnaya Mekhanika), Vol. 25(11), pp. 1139-1146, 1990.

[18]Kayuk, Y. F. and Tverdokhleb, Y. V., “Three-Dimensional Motions of a Rigid Body During Its Transport,” Soviet Applied Mechanics (English Translation of Prikladnaya Mekhanika), Vol. 23(10), pp. 936-943, 1987.
[19]Kayuk, Y. F., “Stability of Motion of a Rotating Disk-Flexible Rod System,” Soviet Applied Mechanics (English Translation of Prikladnaya Mekhanika), Vol. 25(2), pp. 201-208, 1989.
[20]Kayuk, Y. F. and Tilavov, A., “Motion of a Solid of Variable Mass on Elastic Dampers,” Soviet Applied Mechanics (English Translation of Prikladnaya Mekhanika), Vol. 23(5), pp. 505-512, 1987.
[21]Nikravesh, P. E., Computer-Aided Analysis of Mechanical Systems, Prentice- Hall, Inc., New Jersey, 1988.
[22]Shabana, A. A., Dynamics of Multibody Systems, John Wiley & Sons, New York, 1989.
[23]Amirouche, F. M. L., Computational methods in Multibody Dynamics, Prentice - Hall, Inc., New Jersey, 1992.
[24]Haug, E. J., Computer Aided Kinematics and Dynamics of Mechanical Systems , VOL. 1 : Basic Methods, Allyn and Bacon, Boston, MA, 1989.
[25]洪嘉振,計算多體系統動力學,高等教育出版社,上海,1999。
[26]Hu, K., Mourelatos, Z. P., and Vlahopoulos, N., “Computational Analysis for Dynamic Response of a Rotating Shaft on Flexible Support Structure with Clearances,” Journal of Sound and Vibration, Vol. 267, pp. 1-28, 2003.
[27]Cai, G. P., and Hong, J. Z., “Study on Two Dynamic Models for a Rigid -Flexible Coupling System,” Acta Aeronautica Et Astronautica Sinica, Vol. 25(3), pp. 248- 253, 2004.
[28]Yang, H., Hong, J. Z., and Yu, Z. Y., “Vibration Analysis and Experiment Investigation for a Typical Rigid-Flexible Coupling System,” Journal of Astronautics, Vol. 23(2), pp. 67-72, 2002.
[29]Yang, H., Hong, J. Z., and Yu, Z. Y., “Study on Two Dynamic Models for a Rigid-Flexible Coupling System,” Journal of Shanghai Jiaotong University, Vol.36(11), pp. 1591-1595, 2002.
[30]Kang, Chunsoo., A Cost And Operational Effectiveness Analysis for Future Artillery System in Korea, Naval Postgraduate School Monterey, California, Ms. Thesis, Chap. 5, pp. 25-51, 1995.
[31]劉啟沼,“瑞雷分配-彈著點命中率之研究”,軍品科技新知,第105卷,第29-38頁,1998。
[32]張進忠、宋衞東,“某一型槍彈射擊精度分析”,軍械工程學院學報,第14卷,第2期,第30-33頁,2002。
[33]康新中、馬春茂、魏孝達,火砲系統建模理論,國防工業出版社,北京,第41-49頁,2003。
[34]徐誠、王業平,火砲與自動武器動力學,北京理工大學出版社,北京,2006。
[35]吳明嘉,含可撓性腳架之輕兵器系統動態分析,碩士論文,國防大學中正理工學院,桃園,2000。
[36]Sun, H. K., Chen, C. G., and Shen, Y. C., “Dynamic Analysis of Rigid-Body Mechanisms Mounted on Flexible Support Structures — Planar Case,” Material Science Forum, Vols. 505-507, pp. 589-594, January 2006.
[37]孫懷谷、陳村錦、沈昱成,“自動武器系統射擊精度數值模擬之研究” ,中正嶺學刊,第三十四卷第二期,第223-232頁,2006。
[38]孫懷谷、陳村錦、沈昱成,“蒙地卡羅法於自動武器射擊精度分析之運用研究”,第二屆國軍軍事作業研究與模式模擬論壇,第186-201頁,2005。
[39]孫懷谷、陳村錦、沈昱成,“自動武器系統射擊精度數值模擬之研究” ,第14屆國防科技學術研討會,第120-125頁,2005。
[40]沈昱成,蒙地卡羅法於自動武器射擊精度分析之運用研究,碩士論文,國防大學中正理工學院,桃園,2005。
[41]Sun, H. K., Chen, C. G., and Wang, H. P., “Dynamic Analysis of Rigid-Body Mechanisms Mounted on Flexible Support Structures —Spatial Case,” Journal of the Chinese Society of Mechanical Engineers, Accepted.
[42]Yang, T. Y., Finite Element Structural Analysis, Prentice-Hall, Inc., New Jersey, 1986.
[43]Przemieniecki, J. S., Theory of Matrix Structural Analysis, Mcgraw–Hill Book Company, New York, 1968.
[44]Weinacht, P., Newill, J. F., and Conroy, P. J., “Conceptual Design Approach for Small-Caliber Aeroballistics with Application to 5.56-mm Ammunition,” Army Research Laboratory-TR-3620, MD 21005-5066, September 2005.
[45]《步兵近戰武器論證參考》編寫組編,步兵近戰武器論證參考,國防工業出版社,北京,第570-574頁,1992。
[46]兵器系統中心編著,膛外彈道學,中正理工學院,桃園,第45頁,1985。
[47]Anderson, D. R., Sweeney, D. J., Williams, T. A., Statistics for Business and Economics, Info Access & Distribution Pte Ltd, Singapore, 5th ed., pp. 197-251, 1994.
[48]http://news.163.com/41215/0/17KSHEV600011235.html.
[49]http://home.comcast.net/~gunglossary/big5/index.htm。
[50]Przemienjecki, J. S., Mathematical Methods in Defense Analyses, American Institute of Aeronautics, Inc., Reston, Virginua, pp.28-41, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top