跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 18:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張瑞麟
研究生(外文):CHANG JUI LIN
論文名稱:鋼筋混凝土板承受錐型裝藥貫入流固耦合數值模式參數研究
指導教授:鄭丁興鄭丁興引用關係
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:軍事工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:114
中文關鍵詞:錐型裝藥射流鋼筋混凝土貫入
外文關鍵詞:shaped chargejetreinforced-concretepenetrate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在利用LS-DYNA有限元素分析軟體中之ALE流固耦合數值模式,探討鋼筋混凝土板承受錐型裝藥貫入後之坑洞大小,並進行參數研究。鋼筋與混凝土採用Lagrangian網格,而炸藥、藥型罩與空氣採用Eulerian網格。
首先以2005年譚多望對截頂大錐角錐型裝藥進行研究之實驗模型為範本,建構單獨錐型裝藥的純Eulerian描述法數值模型,在經過錐型裝藥射流形成數值模式參數分析後,將射流形成、射流運動的形態等模擬值與實驗值相比較,射流速度誤差在2%以內,但對杵體速度之誤差則大於30%,驗證了本研究所用的錐型裝藥射流形成數值模型的可行性。
在純混凝土板與鋼筋混凝土板承受錐型裝藥貫入部分,以元素侵蝕效應中之剪應變及主應變為主要參數,探討混凝土板承受錐型裝藥貫入後混凝土的破壞現象,研究發現剪應變侵蝕為影響混凝土板破壞之主要控制因素,由模擬結果可知在失效剪應變值為0.002時各項破壞平均直徑有收斂的現象,故失效剪應變建議值為0.002。但與實驗結果相比,數值模擬僅能在最小破壞平均直徑之誤差達5%,頂面與底面破壞平均直徑之誤差仍過大。
The objective of this study is to simulate the behavior of a reinforced-concrete plate subjected to a shaped charge and to discuss the crater sizes after penetrating by using the LS-DYNA finite element software package. The Arbitrary Lagrangian Eulerian(ALE) algorithm was used to simulate explosive, shaped charge and air in an Euler mesh as well as the Lagrange mesh of the rebar and concrete .
First of all, the paper of Formation Mechanism and Design Technique of High-Velocity Rod-Shaped Projectiles-Tan dou-wang,2005 established a shaped charge model with Eulerian method of description compared the simulate value of appearance of jet form and exercise with experiment after simulation analysis of shaped-charge jet, the inaccuracy of jet value was under 2% but over 30% at slug value. It was verified the feasibility of numerical simulation of shaped-charge jet in this study.
Then, concrete and reinforced-concrete plates subjected to a shaped charge were considered for studying the effect of erosion parameters on appearance of concrete destroying after penetrating. Maximum shear strain and principal strain were considered. Results showed that changing maximum shear strain on concrete plate has more effect than maximum principal strain does. Based on the results of simulation, the value of maximum shear strain is 0.002 at which all the average diameters of destroying are converged. So that the value of maximum shear strain is proposed to be 0.002. However, compared to experiment, the error of the minimum average destructive diameter is 5% for numerical simulation. The errors of the top and bottom side for average destructive diameter are still large.
1. 緒論
1.1 研究動機
1.2 研究目的
1.3 文獻回顧
1.3.1錐型裝藥的基本概念
1.3.2影響錐型裝藥性能的因素
1.3.3 數值模擬動態分析
1.3.3.1 射流形成數值模擬
1.3.3.2 錐型裝藥貫入混凝土目標數值模擬
2. 研究方法與步驟
2.1 流固耦合理論
2.1.1 有限元素方程式基本類型
2.1.1.1 Lagrangian描述法
2.1.1.2 Eulerian描述法
2.1.1.3 ALE描述法
2.1.1.4 光滑質點動力學法(簡稱SPH法)
2.1.2有限元素方程式基本理論架構
2.1.2.1 控制方程式
2.1.2.2材料組成律(Material Constitutive Law)
2.1.2.2.1 炸藥(MAT 8)
2.1.2.2.2 空氣(MAT 9)
2.1.2.2.3 藥型罩(MAT 15)
2.1.2.2.4 鋼筋(MAT 3)
2.1.2.2.5 混凝土(MAT 16)
2.1.2.2.5.1 材料模式Ⅰ
2.1.2.2.5.2 材料模式Ⅱ
2.1.2.3 狀態方程式(Equation of State)
2.1.2.3.1 炸藥狀態方程式
2.1.2.3.2 空氣狀態方程式
2.1.2.3.3 藥型罩狀態方程式
2.1.2.3.4 混凝土狀態方程式
2.1.3 元素侵蝕(Erosion)
2.2 LS-DYNA程式
2.2.1 LS-DYNA顯性積分與沙漏模式
2.2.1.1 LS-DYNA顯性積分
2.2.1.2 LS-DYNA沙漏模式
2.3流固耦合分析模型
2.4 研究步驟
3. 錐型裝藥數值模式建構
3.1實驗模型概述
3.2錐型裝藥射流形成數值模擬
3.2.1錐型裝藥射流形成模型收斂性分析
3.2.2錐型裝藥射流形成模型空氣邊長影響分析
3.2.3錐型裝藥射流形成模型藥型罩參數影響分析
3.3模擬值與文獻實驗值及模擬值比較
3.3.1實驗X光照片與模擬圖形比較
3.3.2實驗結果與模擬結果比較
4. 純混凝土板承受錐型裝藥貫入數值模式建構
4.1純混凝土板ALE數值模型建構與收斂性分析
4.1.1 ALE模型建構
4.1.2 ALE網格收斂性分析
4.1.3混凝土板強度比較
4.2純混凝土板主應變與剪應變參數研究
4.3純混凝土板數值模擬值與實驗值之比較
4.3.1實驗模型概述
4.3.2錐型裝藥射流形成數值模擬
4.3.2.1 錐型裝藥射流形成模型收斂性分析
4.3.2.2 實驗X光照片與模擬圖形比較
4.3.3 ALE數值模型建構與收斂性分析
4.3.3.1 ALE模型建構
4.3.3.2 純混凝土板參數研究
5. 鋼筋混凝土板承受錐型裝藥貫入數值模式建構
6. 結論與建議
6.1 結論
6.2 建議
參考文獻
[1]Walters, W. P. and Zukas, J. A., “Fundamentals of Shaped Charges,” John Wiley & Sons, Inc., USA, pp. 45-159, 1989.
[2]Department of The Army, “Fundamental of Protective Design for Conventional Weapons,” Technical Manual TM5-855-1, USA, 1998.
[3]Rollins, R. R. and Clark, G. B. , “Penetration in Granite by Jets from Shaped -Charge Liners of Six Materials,” International Journal of Rock Mechanics and Mining Sciences , Britain, Vol. 10, pp. 183-207, 1973.
[4]李發伯,晏成立,周光前,謝盤海,蔣德春,“聚能炸藥逆向環形起爆形成高速射流研究”, 爆炸與沖擊,四川,第20卷,第3期,第270-273頁,2000。
[5]Baker, E. L., Daniels, A. S., Ng, K. W., Martin, V. O. and Orosz, J. P., “Barnie: A Unitary Demolition Warhead,” 17th International Symposium of Ballistics, Interlaken, Switzerland, pp.569-574, 2001.
[6]Resnyansky, A. D., Katselis, G. and Wildegger-Gaissmaier, A.E., “Experimental and Numerical Study of The Shaped Charge Jet Perforation Against Concrete Target,” 21th International Symposium of Ballistics, Australia, 2004.
[7]譚多望,“高速桿式彈丸的成形機理和設計技術”,博士論文,中國工程物理研究院,四川,第64-130頁,2005。
[8]Huerta, M. and Vigil, M.G., “Design, analyses, and field test of a 0.7m conical shaped charge,” International Journal of Impact Engineering, Britain, Vol. 32, pp. 1201-1213, 2006.
[9]Yu, C., Tong, Y., Yan, C., Li, F., Gui, Y., Zhang, M., Wang, B., Xie, P. and Li, L., “Applied Research of Shaped Charge Technology,” International Journal of Impact Engineering, Britain, Vol. 23, pp. 981-988, 1999.
[10]王利俠,胡煥性,孫建,“聚能裝藥逆向環形起爆射流形成的數值計算”,火炸葯學報,西安,第22卷,第3期,第37-38頁,2001。
[11]趙捍東,陳國光,董永香,“聚能裝藥射流的數值仿真研究”,華北工學院學報,太原,第3期,第211-214頁,2001。
[12]王成,付曉磊,宁建國,“起爆方式對聚能射流性能影響的數值分析”,北京理工大學學報,北京,第26卷,第5期,第401-404頁,2006。
[13]Resnyansky, A. D. and Wildegger-Gaissmaier, A. E., “Study of The Borehole Diameter in Concrete Due To The Shaped Charge Jet Penetration,” 21th International Symposium of Ballistics, Orlando, 2004.
[14]Berg, V. S. and Preece, D. S., “Shaped Charge Induced Concrete Damage Predictions Using RHT Constitutive Modeling,” International Society of Explosives Engineers, Sandia ,2004.
[15]關中林,王清洁、龔義海,“聚能射流侵徹混凝土靶板的優化分析”,工兵裝備研究,南京,第23卷,第4期,第5-8頁,2004。
[16]時檔勇,李裕春,張胜民, “基於ANSYS/LS-DYNA 8.1進行顯示動力分析”, 清華大學出版社,第3頁,2004。
[17]Buyuk, M., Cing, D., Kan, C. D. S., and Bedewi, N. E., “Moving Beyond the Finite Element Methods and Meshless Methods for a Ballistic Impact imulation, ” 8th LS-DYNA Users Conference:Penetration/Explosive, Michigan, 2004.
[18]LS-DYNA Version 970 User’s Manual, Livermore Software Technology Corporation, 2003.
[19]趙海鷗,“LS-DYNA動力分析指南”,兵器工業出版社,北京,第3-7頁,2003。
[20]李裕春,時黨勇,趙遠,“ANSYS 10.0/LS-DYNA基礎理論與工程實踐”,中國水利水電出版社,北京,第188-227頁,2006。
[21]Schwer, L., Geomaterial Modeling with LS-DYNA, Livermore, USA, pp. 1-13, 2001.
[22]Malvar, L. J., Crawford, J. E., Wesevich, J. M., and Simon, D., “A Plasticity Concrete Material Model for DYNA3D,” International Journal of Impact Engineering, Vol. 19, pp. 847-873, 1997.
[23]皮盛榮,“鋼筋混凝土板貫穿之材料參數探討”,碩士論文,中正理工學院,桃園,第1-116頁,2004。
[24]劉權誼,“混凝土在撞擊荷載之行為研究”,碩士論文,國防大學中正理工學院 軍事工程研究所,桃園,第1-133頁,2003。
[25]Lu, Y., Xu, K., and Lim, H. S., “Numerical Simulation of Concrete Break-up Explosive Loading,” Design and Analysis of Structrres against Impact /Impulsive/Shock Loads Conference, Japan, 2003.
[26]Xu, K. and Lu, Y., “Numerical Simulation Study of Spallation in Reinforced Concrete Plates Subjected to Blast Loading,” Computers & Structures Journal, Vol. 84, pp. 431-438, 2006.
[27]許兵,“線型切割索侵徹硬鋁板的實驗研究及數值模擬仿真”,碩士論文,南京理工大學,南京,第15-20頁,2003。
[28]Baum, J. D., Mestreau, E. L., Luo, H., Löhner, R.,Pelessone, D. and Charman, C., “Modeling Structural Response to Blast Loading a Coupled/CFD/CSD Methodology,” Design and Analysis of Structrres against Impact /Impulsive/Shock Loads Conference , Japan, 2003.
[29]Mullin, M. J., and O’Toole, B. J., “Simulation of Energy Absorbing Materials in Blast Loaded Structures,” 8th International LS-DYNA Users Conference: Penetration/Explosive, Michigan, 2004.
[30]葉勇凱,“DYNA3D在鋼筋混凝土結構之應用”,研究計畫報告,國家地震工 程研究中心,台北市,第6-7頁,2002。
[31]洪正偉,“鋼筋混凝土板承受矩形炸藥爆炸之數值模式參數研究” ,碩士論文,中正理工學院,桃園,第1-139頁,2006。
[32]Gebbeken, N., and Ruppert, M., “On the Concrete Material Response to Explosive Loading-Numerical Simulations,” International Symposium on Structures under Shock and Impact Ⅴ, Greece, pp. 773-782, 1998.
[33]Gebbeken, N., and Ruppert, M., “On the Safety and Reliability of High Dynamic Hydrocode Simulations,” International Journal for Numerical Methods in Engineering, 1999.
[34]Ruppert, M., and Gebbeken, N., “Material Formulations for Concrete High Strain-Rates and High Pressures Elasticity-Plasticity-Damage,” 9th International Symposium Zur Interaktion Der Wirkung Von Munition Mit werken, Berlin-Strausberg, 1999.
[35]Gebbeken, N., and Ruppert, M., “A New Material Model for Concrete in High-Dynamic Hydrocode Simulations,”Archive of Applied Mechanics , Springer-Verlag, pp. 463-478, 2000.
[36]李文志,“流固耦合在鋼板承受爆壓數值模式之應用”,碩士論文,中正理工學院,桃園,第1-120頁,2004。
[37]Dobratz, B. M., LL NL Explosives Handbook , Properties of Chemical Explosives and Explosive Simulants, Lawrence Livemore National Laboratory, pp. 8-23, 1981.
[38]Lacome, J. L., Espinosa, C. and Gallet, C., “Simulation of Hypervelocity Spacecrafts And Orbital Debris Collisions using Smoothed Particle Hydrodynamics in LS-DYNA,”
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top