跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 20:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳炫言
研究生(外文):Chen Syuan-Yan
論文名稱:混凝土在動態壓縮荷載下行為之研究
指導教授:張福安張福安引用關係
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:軍事工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:121
中文關鍵詞:混凝土壓縮強度應變率損傷模型
外文關鍵詞:concretecompressive strengthstrain ratedamage model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當探討結構物的防禦能力時,對混凝土在不同荷載率下的行為及特性有充分的了解是非常重要的。混凝土在承受動態壓縮荷載時的反應有別於其在承受靜態荷載時的反應,包括強度、彈性模數、破壞行為、軸向及側向應變等,皆會隨著應變率的增加而改變,而這些行為,又直接或間接的影響混凝土的使用條件、環境及效能。因此,研究混凝土承受壓縮荷載的相關行為時,就必須對混凝土在不同應變率下的壓縮荷載行為有相當的暸解。
本文以試驗及理論分析模型方式,研究直徑73 、長度146 混凝土試體在壓縮荷載下之應變率效應。設計擬靜態試驗以0.0217 速度加載,動態試驗以1.2 、25 、1000 及7000 速度加載。討論混凝土圓柱試體在承受不同壓縮荷載速度下,相關行為的改變及特性。並使用高速攝影機紀錄混凝土試體中裂縫形成、傳播及試體破壞之過程及特性。
試驗結果顯示,在試體承受壓縮荷載的情況下,動態放大係數隨著應變率的增加而增加,而且在承受加載速度1000 以上時,抗壓強度有明顯增加之趨勢。本研究由所推導之損傷模型與三種強度混凝土抗壓試驗結果分析,在彈性範圍內有較佳之趨勢。
To understand the behaviour and properties of concrete at different loading rates is vary important for considering the defense abilities of constructure. The response of concrete in dynamic is very different from which in static. Including trength、modulus of elasticity, behaviour of failure, axies and lateral strain, all of those will change with increasing strain-rate and effect extremely the environment and condition of using concrete in structure. So that, we must have very well comprehension for compression situation of concrete of different strain-rate when studying the behaviour of concrete to endure condition of compression loading.
The objective of this study were performed on both forms of damage theory and materials experiment. For the theory analysis of the relationship of stress and strain are used the continuum mechanics and thermodynamics, for the experiment, was to discuss that the effects of strain-rate on compressive properties of concrete cylindrical specismens 72 mm in diameter and about 146 in length specismens with varied velocity of compression loading with designing the quasistatic loading experimemts in velocity of 0.0217 , and the dynamic loading experimemts in velocity of 1.2 , 25 , 1000 and 7000 . To record the process and characteristics for formation and propagation of cracks and failure of speciments In terms of using a high-speed framing camera.
Experiments indicate that the dynamic increase factors of concrete specimens increase significantly with strain rate, especially on compression loading up to 1000 . The analysis of the comparison between damage model and experiments are well consistence in the range of elasticity.
誌謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 viii
圖目錄 ix
符號說明 xiv
1. 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 試驗及數值模擬 2
1.2.2 理論分析 8
2. 研究內容 10
2.1理論分析 11
2.1.1 損傷理論 11
2.1.2 熱力學定律 11
2.1.3 赫姆霍茲自由能 14
2.1.4 材料組成方程式 15
2.2 試驗計畫 20
2.2.1 試體製作 20
2.2.2 儀器設備及儀器校正 25
2.2.3 試驗方法 32
3. 混凝土試體抗壓試驗 34
3.1 A強度(14 )混凝土圓柱試體抗壓試驗 35
3.1.1 在a速度(0.0217 )下之試驗 35
3.1.2 在b速度(1.2 )下之試驗 39
3.1.3 在c速度(25 )下之試驗 43
3.1.4 在d速度(1000 )下之試驗 47
3.1.5 在e速度(7000 )下之試驗 51
3.2 B強度(20 )混凝土圓柱試體抗壓試驗 55
3.2.1 在a速度(0.0217 )下之試驗 55
3.2.2 在b速度(1.2 )下之試驗 59
3.2.3 在c速度(25 )下之試驗 63
3.2.4 在d速度(1000 )下之試驗 67
3.2.5 在e速度(7000 )下之試驗 71
3.3 C強度(28 )混凝土圓柱試體抗壓試驗 75
3.3.1 在a速度(0.0217 )下之試驗 75
3.3.2 在b速度(1.2 )下之試驗 79
3.3.3 在c速度(25 )下之試驗 83
3.3.4 在d速度(1000 )下之試驗 87
3.3.5 在e速度(7000 )下之試驗 91
4. 試驗結果與討論 95
4.1試驗結果討論 95
4.1.1 混凝土靜態與動態破壞行為 95
4.1.2 抗壓強度之比較 96
4.1.3 動態放大係數與應變率之關係 102
4.2 理論與試驗之討論 112
5. 結論與展望 116
5.1 結論 116
5.2 未來展望 117
參考文獻 118
自傳 121
[1]Krajcinovic, D., and Fonseka, G. U., “ The Continuous Damage Theory of Brittle Materials Part 1:General Theory,” Journal of Applied Mechanics, Vol. 48, pp. 809-815, 1981.
[2]Krajcinovic, D., and Fonseka, G. U., “ The Continuous Damage Theory of Brittle Materials Part 2:Uniaxial and Plane Response Modes,” Journal of Applied Mechanics, Vol. 48, pp. 816-824, 1981.
[3]Curbach, M., and Eibl, J., “ Nonlinaer Behaviour of Concrete under High Compressive Loading Rates,” In Fracture of Concrete and Rock : Recent Development, pp. 193-202,1989.
[4]Bischoff, P. H., and Perry, S. H., “Impact Behavior of Plain Concrete Loaded in Uniaxial Compression,” Journal of Engineering Mechanics, Vol. 121, pp. 685-693,1995.
[5]Ross, C. A., Tedesco, J. W., and kuennen, S. T., “Effects of strain rate on concrete strength,” ACI Materials journal, Vol. 92, pp. 37-47, 1995.
[6]劉權誼,混凝土在撞擊荷載之行為研究,碩士論文,國防大學中正理工學院軍事工程研究所,桃園,第127-129頁,2003。
[7]Baalbaki, W., Baalbaki, M., Benmokrane, B., and Aitcin, P. C., “Influence of Specimen Size on Compressive Strength and Elastic Modulus of High-Performance Concrete," American Society for Testing and Materials, Vol. 14, pp. 113-117, 1992.
[8]Elfahal,T. M., Lim, M. J., Ohno, T., Beppu, M., and G. Markeset, “Size effect for high-strength concrete cylinders subjected to axial impact”, International Journal of Impact Engineering, Vol. 28, pp. 1001-1016, 2003.
[9]Elfahal,M. M., Krauthammer, T., Ohno, T., Beppu, M., and Mindess, S., “Size effect for normal strength concrete cylinders subjected to axial impact”, International Journal of Impact Engineering, Vol. 31, pp. 461-481, 2005.
[10]Bischoff , P. H., and Perry, S. H., “Compressive Behaviour of Concrete at High Strain Rate,” Materials and Structures, Vol. 24, pp. 425-450, 1991.
[11]余天慶,錢濟成,損傷理論及其應用,國防工業出版社,北京,第155頁,1993。
[12]Bischoff , P. H., and Perry, S. H., “Compressive Strain Rate Effects of Concrete,” Cemet-Based Composites:Strain Rate Effects on Fracture, pp. 87-92, 1986.
[13]Grote, D. L., Park, S. W., and Zhou, M., “Dynamic Behaviour of Concrete at High Strain Rates and Pressures: I. Experimental Characterization,” International Journal of Impact Engineering, Vol.25, pp. 869-886, 2001.
[14]Sukontasukkul, P., Nimityongskul, P., and Mindess, S., “Effect of Loading Rate on Damage of Concrete,” Journal of Cement and Concrete Research, Vol. 34, pp. 2127-2134, 2004.
[15]Barpi, F., “Impact behaviour of concrete: a computational approach,” Journal of Engineering Fracture Mechanics, Vol. 34, pp. 2197-2213, 2004
[16]趙建生,斷裂力學及斷裂物理,華中科技大學出版社,江蘇,第3頁,2003。
[17]樓志文,損傷力學基礎,西安交通大學出版社,西安,第1-3頁,1991
[18]黃筑平,連續介質力學基礎,高等教育出版社,北京,第168頁,2003。
[19]Suaris, W., and Shah, S. P., “Rate-Sensitive Damage Theory for Brittle Solids,” Journal of Engineering Mechanics, Vol. 110, pp. 985-997, 1984.
[20]Suaris, W., and Shah, S. P., “Constitutive Model for Dynamic Loading of Concrete,” Journal of Structure Engineering , Vol. 111, pp. 563-575, 1985.
[21]董毓利,謝和平,趙鵬,“不同應變率下混凝土受壓全過程的實驗研究及其本構模型”,水利學報,第七期,第72-77頁,北京,1997。
[22]朱萬成,趙顧林,唐春安,卓家壽,“混凝土斷裂過程的力學模型與數值模擬”,力學進展,第三十二卷,第四期,第579-598頁,南京,2002。
[23]國科企業公司,”MTS伺服液壓試驗系統配備TestStar IIs控制器訓練課程-原理操作及保養”,教育訓練手冊,台北,2006.
[24]Watstein, D., “Effect of Straining Rate on the Compressive Strength and Elastic Properties of Concrete,” Journal of the American Concrete Institute, Vol. 24, pp. 729-744, 1953.
[25]Malvar, L. J., and Crawford, J. E., “Dynamic increase factors for concrete,” 28th DDESB Seminar, Auguest, 1998.
[26]Eibl, J., and Hurtienne, B. S., “Strain-rate-sensitive constitutive law for concrete,” Journal of Engineering Mechanics, Vol. 125, pp. 1411-1420 ,1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top