跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃彥鈞
研究生(外文):Yan-Jiun Huang
論文名稱:橢圓機不同坡度運動經濟性及下肢運動軌跡研究
論文名稱(外文):Analysis of Exercise Economy and Track of Lower Extremity during Different Gradient Elliptical Trainer Exercise
指導教授:王順正王順正引用關係
指導教授(外文):Soun-Cheng Wang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:運動與休閒教育所
學門:民生學門
學類:運動休閒及休閒管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:52
中文關鍵詞:橢圓機運動軌跡運動經濟性
外文關鍵詞:kinematicsexercise economyelliptical trainer
相關次數:
  • 被引用被引用:14
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:0
目的:利用攝氧 (oxygen uptake, VO2) 、心跳率 (Heart Rate, HR) 與二維攝影分析,探討橢圓機踩踏方向(向前、向後)與不同坡度 (0%、5%、10%、15%、20%) 對運動經濟性與下肢運動軌跡的影響。方法:以15位男性大學生為研究對象(年齡22.60±2.80歲、身高174.60±4.31公分、體重69.67±9.65公斤)。受試者依平衡次序原則,以60rpm,0阻力進行不同踩踏方向的五個坡度橢圓機踩踏。每個坡度踩踏三分鐘後休息十分鐘,兩次方向實驗間隔24小時以上。以Cortex氣體分析儀紀錄第三分鐘穩定之攝氧量與心跳率。並以二維攝影拍攝20秒運動軌跡。Kwon3D動作分析系統分析八個穩定週期之髖關節、膝關節、踝關節之角度、角速度變化。資料以二因子重複量數變異數分析探討踩踏方向與坡度對運動經濟性與運動學之影響。結果:攝氧量方面,前後踩踏方向在0% (31.11±3.90、29.32±3.81 ml/kg/min) 與20% (31.57±3.43、33.43±3.48 ml/kg/min) 達到顯著差異(p< .05)。固定因子為前踩,則20%顯著高於15% (p=.007) 與10% (p=.007)。後踩時,除10%與5%、5%與0%未達顯著外,坡度間皆達顯著差異。心跳率方面,踩踏方向在0% (144.49±16.45、138.19±11.37bpm) 與20% (143.53±15.22、149.04±12.19bpm) 達顯著差異 (p< .05)。固定因子為前踩,則20%顯著大於10% (p= .029);10% 顯著小於0% (p= .015)。後踩時20%顯著大於15%、10%、5%、0% (p< .05);15%顯著大於0% (p= .001)、5%顯著大於0% (p= .036)。運動學方面,前踩髖、膝關節變化量顯著大於後踩,踝關節顯著小於後踩;角度變化量髖、膝關節隨坡度增加顯著增加,踝關節隨坡度增加而減少。角速度方面,前、後踩之髖關節、膝關節之角速度皆隨著坡度上升而增加。踝關節角速度變化量與坡度呈反比。結論:可調坡度橢圓機上在前踩運動經濟性會隨坡度增加呈現先增後減的現象:後踩時運動經濟性隨坡度增加逐漸變差。運動學資料發現,髖、膝關節活動量與角速度隨著坡度上升而顯著上升,踝關節則顯著下降。
Purpose: The purposes of this study was to evaluate the effects of forward and backward pedaling and different gradient (0%、5%、10%、15%、20%) elliptical trainer exercise on the track of lower extremity and physiological response (oxygen uptake,VO2 ; heart rate, HR) (Agile Trainer, Greenmaster ) . Method: Fifteen volunteer subjects (age: 22.60±2.80 yrs, height: 174.60±4.31 cm, weight: 69.67±9.65 kg) underwent ten trials composed of five different gradient elliptical trainer exercises (0%, 5%, 10%, 15% and 20%) and two direction (forward, backward) with counter-balance. Each exercise trail was three minutes and a ten minute sedentary rest was set between each exercise trail. Kinematics was calculated by Kwon3D3.01 motion analysis system with twenty seconds. In addition, oxygen uptake (VO2) and heart rate (HR) were measured during the third minute for 60 seconds. Two-way ANOVA was employed to determine the difference of VO2, HR, angle of joint and angular velocity among different gradient and direction. Results: significant differences were found for VO2 across direction at 0% (31.11±3.90、29.32±3.81 ml/kg/min) and 20% (31.57±3.43、33.43±3.48 ml/kg/min). In forward direction, 20% was significantly higher than 15% (p=.007) and 10% (p=.007). In backward, VO2 was significantly different except 10%,5% and 5%,0%. Significant differences were found for HR across direction at 0% (144.49±16.45、138.19±11.37bpm) and 20% (143.53±15.22、149.04±12.19bpm) (p< .05). In forward direction, 20% was significant higher than 10% (p=.029) and 10% was significant lower than 0% (p=.007). In backward, 20% was significant higher than 15%, 10%, 5% and 0% ; 15% higher than 0% (p= .001) ;5% higher than 0% (p= .036). In the motion of lower extremity, the angle change in hip, knee and angle was significantly differences across directions (p< .05). In angular velocity,hip, knee joint were higher with gradient increasing. Conclusion: The elliptical trainer (Model: Agile Trainer) could vary the physiological response and motion track of lower limbs through a changeable gradient.
摘 要 I
Abstract II
謝 誌 III
目 錄 IV
表目錄 VI
圖目錄 VII
第壹章 緒論 1
一、前言 1
二、研究背景 1
三、研究目的 3
四、名詞操作性定義 3
五、研究範圍與限制 4
六、研究的重要性 4
第貳章 文獻探討 6
一、橢圓機相關研究 6
二、倒退走的運動生理反應 7
三、坡度改變對人體的生理反應 9
四、橢圓機運動軌跡相關研究 11
五、文獻探討總結 14
第參章 研究方法與步驟 15
一、研究對象 15
二、研究架構 15
三、研究工具 16
四、實驗步驟 22
五、資料處理 24
第肆章 結果 25
一、踩踏方向與坡度對攝氧量差異分析 25
二、踩踏方向與坡度對心跳率差異分析 26
三、踩踏方向與坡度之下肢關節軌跡 27
四、踩踏方向與坡度之關節活動量差異分析 28
五、踩踏方向與坡度之關節角速度差異分析 32
第伍章 討論 38
一、踩踏方向與坡度對運動經濟性之影響 38
二、踩踏方向與坡度對運動學之影響 41
第陸章 結論與建議 43
一、結論 43
二、建議 43
參考文獻 44
附錄一 49
附錄二 50
附錄三 51
王迺聖、劉虣虣(2002)。橢圓機最佳軌跡研究。代步與休閒產業雙月刊,4,21-26。
王錠堯(2004)。攝氧量動力學(oxygen uptake kinetics)。運動生理學週訊,169。2004年6月7日,取自http://140.123.226.100/epsport/week/show.asp?repno=169
&page=1
王國樑、吳涼舟(2006)。運動器材之踏板結構(一)。中華民國專利第290759號。
王順正(2006)。橢圓機(elliptical trainer)運動的生理反應。運動生理學週訊,216。2006年5月10日,取自http://www.epsport.idv.tw/epsport/week/show.asp? repno=216&page=1
邱文盟(2004)。六連桿橢圓運動機之改良與運動合成。未出版碩士論文,國立中興大學,台中市。
林正常(1995)。運動生理學實驗指引。台北市:師大書苑。
林世欽、陳五洲(2006)。淺談倒退行走運動。大專體育,85,181-186。
洪征貝(2002)。橢圓運動機之運動合成。未出版碩士論文,國立成奶j學,台南市。
郭純甫(2006)。正常步態運動機之機構設計。未出版碩士論文,逢甲大學,台中市。
侯捷仁(2004)。老年人背向行走之生物力學分析。未出版碩士論文,國立台灣師範大學,台北市。
陳立元(1995)。在跑步機上後退步態的力學及肌電圖分析。未出版碩士論文,中山醫學院,台中市。
陳瑩德(2005)。二合一橢圓機之研發。未出版碩士論文,國立臺北科技大學,台北市。
黃文敏(2004)。橢圓運動機之構造與尺度合成。未出版碩士論文,國立成奶j學,台南市。
黃世旭(1995)。青年與老年人之三維步態分析。未出版碩士論文,國立陽明大學,台北市。
劉佳玲(2004)。適應性動作調整對活動下肢生理負荷之影響-以跑步機與橢圓形軌道機為例。未出版碩士論文,朝陽科技大學,台中縣。
簡惠蓮(2006)。橢圓機運動之下肢生物力學分析。未出版碩士論文,國立台灣大學,台北市。
羅世忠、徐振凱、陳協慶、李正隆、吳欣潔(2006)。以人體質量中心參數對橢圓滑步機作弁鄔妗禲C第13屆中華民國人因工程學會年會暨研討會報告書。高雄:義守大學。
Chaloupka, E. C., Kang, J., Mastrangelo, M. A., & Donnelly, M. S. (1997). Cardiorespiratory and metabolic responses during forward and backward walking. The Journal of Orthopeaedic and Sports Physical Therapy, 25(5), 302-306.
Clarkson, E., Cameron, S., Osmon, P., McGraw, C., Smutok, M., & Stetts, D. (1997). Oxygen consumption, heart rate, and rating of perceived exertion in young adult women during backward walking at different speeds. The Journal of Orthopeaedic and Sports Physical Therapy, 25(2), 113-118.
Chien, H.L., Fu, Y.C., & Lu, T.W. (2005). Biomechanics of the lower extremities during elliptical trainer exercise. Poster session presented at the 2nd Asian Pacific Conference on Biomechanics, Taipei, Taiwan.
Dolny, D., Hughes, N. J., Caylor, R., & Browder, K. (2004). Effect of varying stride length on cardiorespiratory response during elliptical trainer exercise. Medicine and Science in Sports and Exercise, 36(5), S250.
Flynn, T. W., Connery, S. M., Smutok, M. A., Zeballos, R. J., & Weisman, I. M. (1994). Comparison of cardiopulmonary responses to forward and backward walking and running. Medicine and Science in Sports and Exercise, 26(1), 89-94.
Hooper, T. L., Dunn, D. M., Props, J. E., Bruce, B. A., Sawyer, S. F., & Daniel, J. A. (1994). The effects of graded forward and backward walking on heart rate and oxygen consumption. The Journal of Orthopedic and Sports Physical Therapy, 34(2), 65-71.
Jones A. M.,& Doust J. H. (1996). A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. Journal of Sports Sciences, 14(4), 321-327.
Porcari, J. P., Zedarker, J. M., Nawer, L., & Miller, M. (1998). Evaluation of an elliptical exercise in comparison to treadmill walking and running, stationary cycling, and stepping. Medicine and Science in Sport and Exercise, 30, S168.
Larsen, B. T., & Heath, E. M. (2002). Energy expenditure for an elliptical trainer at three cadences. Medicine and Science in Sports and Exercise, 34(5), S295.
Robert, A. P. (1991). The closed kinetic chain in strength training. National Strength and Conditioning Association Journal. 13(1), 29-33.
Hajiefermides, G., Michael, T., Zabik, R., Liu, Y., Dawson, M., & Carl, D. (2003). Comparison between stationary and moving handlebar use during forward and backward pedaling on an elliptical trainer. Medicine and Science in Sports and Exercis, 35(5), S192.
Liu, J.Y., & Hsu, M.H. (2004). Creative design of the elliptical stepper with a pace-correction function. The TRIZ Journal, November Issue, 1-14.
Myatt, G., Baxter, R., Dougherty, R., Williams, G., Halle, J., & Stetts, D. (1995). The cardiopulmonary cost of backward walking at selected speeds. The Journal of Orthopeaedic and Sports Physical Therapy, 21(3), 132-138.
Navalta, J. W., Sedlock, D. A., & Park, K. (2004). Physiological responses to downhill walking in older and younger individuals. Journal of Exercise Physiology, 7(6), 45-61.
Pecchia, K., Evans, B. W., Edwards, J. E., & Bell, F. (1999). Physiological responses to exercise on the elliptical trainer compared to the treadmill. Medicine and Science in Sports and Exercise, 31(5), S158.
Porcari, J., Foster, C., & Schneider, P. (2000). Exercise response to elliptical trainers. fitness management (2000/8). Retrieved December 30, 2006, from http://www.fitnessmanagement.com/FM/tmpl/genPage.asp?p=/information/articles/library/aerobic/elliptical0800.html
Palazzetti, S., Margaritis, I., & Guezennec, C. Y. (2004). Swimming and cycling overloaded training in triathlon has no effect on running kinematics and economy. International Journal of Sports Medicine, 25, 1-7.
Schorner, M. J., Terracciano, D. C., Hickner, R. C., & McCammon, M. R. (2004). The PreCor EFX546 elliptical trainer over predicts energy expenditure. Medicine and Science in Sports and Exercise, 36(5), 249-250.
Thorstensson, A. (1986). How is the normal locomotor program modified to produce backward walking. Experimental Brain Research, 61, 664-668.
Terblanche, E., Cloete, W. A., Plessis, P. A., Sadie, J. N., Strauss, A., & Unger, M. (2003). The metabolic transition speed between backward walking and running. European Journal of Applied Physiology, 90(5), 520-525.
Terblanche, E., Page, C., Kroff, J., & Venter, R. E. (2005). The effect of backward locomotion training on the body composition and cardiorespiratory fitness of young women. International Journal of Sports Medicine, 26(3), 214-219.
Wanta, D. M., Nagle, F. J., & Webb, P. (1993). Metabolic response to graded downhill walking. Medicine and Science in Sports and Exercise, 25(1), 159-162.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top