跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/05 00:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫維成
研究生(外文):Wei-Cheng Sun
論文名稱:蛋白體學法探討TrichodermareeseiRutC30分泌纖維素分解酵素水解稻草桿
論文名稱(外文):Protoemic study on cellulases secreted by Trichoderma reesei Rut C30 for the hydrolysis of rice straw
指導教授:李文乾
指導教授(外文):Wen-Chien Lee
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:159
中文關鍵詞:稻草桿蛋白體學纖維素分解酵素
外文關鍵詞:cellulaserice strawproteomic
相關次數:
  • 被引用被引用:3
  • 點閱點閱:466
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:1
稻草桿是台灣地區最大宗生質廢棄物,若能妥善利用,使成為能源來源之一,對於能源極度仰賴外國的台灣而言,將是一舉數得。

本研究首先探討稻草桿前處理方法與培養基的不同,如何影響 T. reesei Rut C30 產生纖維素分解酵素的活性高低。研究發現以低濃度 KH2PO4 與誘導培養前調整 pH 值的培養基所誘導的纖維素分解酵素活性較高。另外在前處理方面,稻草桿粗枝鹼前處理所誘導出的纖維素分解酵素活性最高,可達 1.07 FPU/ml;其次是稻草桿粉末(0.79 FPU/ml)與稻草桿2公分粗枝(0.63 FPU/ml)。與文獻比較,本研究使用簡便的前處理方式即可獲得相當活性的酵素,顯示所建立的誘導培養方法有經濟效益,有工業上應用潛力。

另外,蛋白質體學是後基因時代最重要的研究領域,但真菌類T. reesei Rut C30 的蛋白體學仍屬起步階段。本研究使用蛋白體學中最有力的工具—二維膠體電泳,來分析 T. reesei Rut C30 分泌之胞外酵素的組成。除了確立二維膠體電泳分析的較佳條件外,發現經棉花纖維素 Avicel 與不同前處理稻草桿的誘導產生的胞外酵素組成有明顯的不同。另外,與文獻比較,發現本研究分析胞外酵素所得到的蛋白質點數量明顯增多,這結果有助於尋找纖維素分解酵素的蛋白質新組成,對於 T. reesei 屬蛋白體學的建立也將有助益。最後,本研究將二維膠體電泳圖譜對應到的 CBH I 與 CBH II 百分體積總和與酵素比活性(FPU/mg)作圖、以及 β-glucosidase 百分體積與 CB 比活性(U/mg)作圖,分別皆可得到良好的線性關係,這對於探討纖維素分解酵素中成份蛋白的組成比例有相當的幫助。
Rice straw is a major agricultural waste in Taiwan. The generation of energy from this biomass is very valuable for Taiwan, a country that highly depends on the imported energy.
In this research, different pretreated preparations of rice straw were used to induce the production of cellulase complex by a cellulase-producing strain Trichoderma reesei Rut C30 cultured in different media. Results from medium study indicated that the medium with low KH2PO4 concentration and adjusting pH before inducing cultivation could result in higher enzymatic activities for cellulose hydrolysis. Among these different pretreated preparations of rice straw, the alkaline-treated rice straw fragments could result in the highest cellulase activity, which was determined to be 1.07 FPU/ml. Powdered rice straw could generate a cellulase activity of 0.79 FPU/ml, while the non-pretreated rice straw fragment (2 cm) led a cellulase activity of 0.63 FPU/ml. These results suggested that using rice straw after the proposed pretreatments as the substrate for the production of cellulase and consequently the utilization of rice straw for fuel ethanol production is very potential.
Proteomics is a very important research field in the post-genome era. However, proteomics in T. reesei Rut C30 is still on the very early stage. In this research, two-dimensional gel electrophoresis (2-DE) was employed as a tool for analyzing the composition of enzyme complex secreted by T. reesei Rut C30 that was cultivated on rice straw. In addition to the development of preferable method in 2-DE, the protein profile of enzyme complex secreted by T. reesei Rut C30 that was cultivated on Avicel and other pretreated preparations of rice straw was excavated. Results indicated that the cellulase composition varied with the substrate for the induction of cellulose production. In comparison with those in the literature and database, more protein spots were found in the 2-DE gel, suggesting that they may be new members in cellulase complex. Finally, the expression levels of protein spots appeared in the 2-DE gel were found to be well correlated to the specific activities of corresponding cellulase components. The correlation is useful for the determination of composition ratio in the cellulase complex.
中文摘要 .I
英文摘要 .III
目錄 V
圖目錄 XI
表目錄 XVII
第一章 緒論 1
1.1 前言與研究背景 1
1.2 文獻回顧與實驗原理 2
1.2.1 纖維素分解酵素的相關研究 2
1.2.2 T. reesei 菌株之胞外酵素組成 4
(A)纖維素分解酵素(cellulase) 4
(B)半纖維素分解酵素(hemicellulase) 7
1.2.3 稻草桿前處理之相關研究 8
(A)稻草桿成份探討 8
(B)稻草桿前處理 9
1.2.4 二維膠體電泳的相關研究 13
(A)與纖維素分解酵素有關的二維膠體電泳研究 13
(B)樣品前處理 14
(C)第一維與第二維電泳 16
(D)銀染 17
(E)影像處理 18
1.2.5 第一維電泳—IEF 原理 19
1.2.6 第二維電泳—SDS-PAGE 原理 20
第二章 實驗方法、材料與設備 22
2.1 實驗材料 22
2.1.1 Trichoderma reesei Rut C30 的培養 22
2.1.2 孢子、蛋白質、還原醣與葡萄糖的測定 23
2.1.3 二維膠體電泳之第一維 25
2.1.4 二維膠體電泳之第二維 26
2.1.5 銀染 27
2.2 實驗儀器 28
2.3 實驗方法 30
2.3.1 Trichoderma reesei Rut C30 的培養 31
(A)固態培養 31
(B)液態前培養 32
(C)誘導培養 33
2.3.2 蛋白質濃度的測定 35
(A)蛋白質濃度檢量線 35
(B)測量樣品中蛋白質濃度 35
2.3.3 還原醣濃度的測定 36
(A)還原醣濃度檢量線 36
(B)測量樣品中還原醣濃度 38
2.3.4 葡萄糖濃度的測定 39
(A)葡萄糖濃度檢量線 39
(B)測量樣品中葡萄糖濃度 40
2.3.5 FPA(filter paper assay)測纖維素分解酵素活性 41
2.3.6 內切型纖維素分解酵素(CMCase)活性分析 41
2.3.7 葡萄糖苷酵素活性分析(cellobiose assay) 42
2.3.8 二維膠體電泳之第一維 42
(A)酵素沉澱 42
(B)第一維等電點分離 44
2.3.9 二維膠體電泳之第二維 46
2.3.10 銀染 49
(A)二胺銀法 49
(B)硝酸銀法 51
2.3.11 膠片掃描 52
2.3.12 膠片比對與分析 53
(A)蛋白質點偵測 53
(B)蛋白質點比對 54
第三章 實驗結果與討論 56
3.1 蛋白質濃度測定與其檢量線 56
3.2 還原醣濃度測定與其檢量線 56
3.3 葡萄糖濃度測定與其檢量線 59
3.4 孢子濃度檢量線 61
3.5 各種酵素活性的意義 61
3.6 高濃度 KH2PO4 與未調整 pH 值培養基(原始培養基)的
誘導效果 63
3.6.1 純粹物理性前處理稻草桿誘導效果 63
3.6.2 物理性加化學性前處理稻草桿誘導效果 67
(A)酸前處理 67
(B)鹼前處理 71
3.6.3 無誘導物時酵素分泌情形 75
3.7 低濃度 KH2PO4 與誘導前調整 pH 值培養基(改良培養基)
的誘導效果 76
3.7.1 誘導效果 77
3.7.2 與其他論文的比較 81
3.7.3 無誘導物 82
3.7.4 內切型纖維素分解酵素與葡萄糖苷酵素活性 83
3.8 二維膠體電泳分析 85
3.8.1 經由原始培養基誘導產生胞外酵素之二維膠體電泳圖 85
3.8.2 經由改良培養基誘導產生胞外酵素之二維膠體電泳圖 96
3.8.3 二維膠體電泳條件最佳化 101
(A)沉澱方法比較 101
(B)IEF 條件對於電泳圖譜的影響 104
(C)第二維電泳條件對於電泳圖譜的影響 106
(D)銀染條件對於電泳圖譜的影響 106
3.8.4 電泳圖譜與誘導天數的關係 108
3.8.5 二維膠體電泳資訊與比活性的關係 113
第四章 結論 117
第五章 參考文獻 120
附錄A 不同樣品不同操作時間,二維膠體電泳圖譜重現性分析
附錄B 無誘導物與經 Avicel 誘導產生胞外酵素之二維膠體電泳圖
譜差異
附錄C 其他二維膠體電泳圖譜
【中文文獻與專書】

李如月“纖維二糖之合成及其固定化應用”中原大學化學工程研究所碩士論文(1994)

莊榮輝“酵素化學實驗”國立台灣大學農業化學系(2000)
pp. 115-117

“能源政策白皮書”,經濟部能源局(2005)

“農業統計要覽”,行政院農業委員會(93~94 年資料,網頁版)
網址:http://stat.coa.gov.tw/dba_as/As_root.htm(2006 年)

【英文文獻與專書】

Bailey, M. J. and Nevalainen, K. M. H. “Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase.” Enzyme Microb. Technol., 3 (1981) 153-157

Berkelman, T. and Stenstedt, T. “2D electrophoresis using immobilized pH gradients, principles and methods.” 80-6429-60, Amersham Biosciences, 2001

Bjellqvist, B., Ek. K., Righetti, P. G., Gianazza, E., Gorg, A., Westermeier, R. and Postel, W. “Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications.” J. Biochem. Biophys. Methods., 6 (1982) 317-339

Bjellqvist, B., Sanchez, J. C., Pasquali, C., Ravier, F., Paquet, N., Frutiger, S., Hughes, G. J. and Hochstrasser, D. “Micropreparative two-dimensional electrophoresis allowing the separation of samples containing millgram amounts of proteins.”Electrophoresis, 14 (1993) 1375-1378

Bigelow, M. and Wyman, C. E. “Cellulase production on bagasse pretreated with hot water.” Appl. Biochem. Biotechnol., 98-100 (2002) 921-933

Bradford, M. M. “A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding.” Anal. Biochem., 72 (1976) 248-254

Chirico, W. J. and Brown, R. D. “Purification and characterization of a β-glucosidase from Trichoderma reesei.” Eur. J. Biochem., 165 (1987) 333-341

Colina A., Sulbaran-de-Ferrer, B., Aiello, C. and Ferrer, A. “Xylanase production by Trichoderma reesei Rut C-30 on rice straw.” Appl. Biochem. Biotechnol., 105-108 (2003) 715-724

Domingues, F. C., Queiroz, J. A., Cabral, J. M. S. and Fonseca, L. P. “The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30” Enzyme Microb. Technol., 26 (2000) 394–401

Fryksdale, B. G., Jedrzejewski, P. T., Wang, D. L., Gaertner, A. L. and Miller, B. S. “Impact of deglycosylation methods on two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry for proteomic analysis.” Electrophoresis, 23 (2002) 2184-2193

Ghose, T. K. “Measurement of cellulase activities.” Pure Appl. Chem., 59 (1987) 257-268

Görg, A., Postel, W., and Günther S. “Two-dimensional electrophoresis. The current state of two-dimensional electrophoresis with immobilized pH gradients” Electrophoresis, 9 (1988) 531-546

Gould, J. M. “Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification.” Biotechnol. Bioeng., 26 (1984) 46-52

Hochstrasser, D. F., Harrington, M. G., Hochstrasser, A. C., Miller, M. J. and Merril, C. R. “Methods for increasing the resolution of two-dimensional protein electrophoresis. ” Anal. Biochem., 173 (1988) 424-435

Hui, J. P. M., Laanthier, P., White, T. C., McHugh, S. G., Yaguchi, M., Roy, R and Thibault, P. “Characterization of cellobiohydrolase I (Cel 7A) glycoforms from extracts of Trichoderma reesei using capillary isoelectric focusing and electrospray mass spectrometry.” J. Chromatogr. B, 752 (2001) 349-368

Hui, J. P. M., White, T. C. and Thibault, P. “Identification of glycan structure and glycosylation sites in cellobiohydrolase II and endoglucanases I and II from Trichoderma reesei.” Glycobiology, 12 (2002) 837-849

Jiang, L, He, L. and Fountoulakis, M. “Comparison of protein precipitation methods for sample preparation prior to proteomic
analysis.” J. Chromatogr. A, 1023 (2004) 317-320

Jørgensen, H., Kutter, J. P. and Olsson, L. “Separation and quantification of cellulases and hemicellulases by capillary electrophoresis.” Analy. Biochem., 317 (2003) 85-93

Juhász, T., Szengyel, Z., Szijártó, N. and Réczey, K. “Effect of pH on cellulase production of Trichoderma reesei RUT C30.” Appl. Biochem. Bioeng., 113-116 (2004) 201-211

Lappalainen, A., Siika-aho, M., Kalkkinen, N., Fagerstrom, R., and Tenkanen, M. “Endoxylanase II from Trichoderma reesei has several isoforms with different isoelectric points.” Biotechnol. Appl. Biochem., 31 (2000) 61-68

Lim, D., Hains, P., Walsh, B., Bergqusit, P. and Nevalainen, H. “Proteins associated with the cell envelope of Trichoderma reesei : A proteomic approach.” Proteomics, 1 (2001) 899-901

Lippincott, J. and Apostol, I. “Carbamylation of cysteine: a potential artifact in peptide mapping of hemoglobins in the presence of urea.” Anal. Biochem., 267 (1999) 57-64

Manadas, B. J., Vougas, K., Fountoulakis, M. and Duarte, C. B. “Sample sonication after trichloroacetic acid precipitation increases protein recovery from cultured hippocampal neurons, and improves resolution and reproducibility in two-dimensional gel electrophoresis.” Electrophoresis, 27 (2006) 1825-1831

Mandels, M. and Reese, E. T. “Induction of cellulase in Trichoderma viride as induced by carbon sources and metals.” J. Bacteriol., 73 (1957) 269-278

Mandels, M. and Reese, E. T. “Induction of cellulase in fungi by cellobiose.” J. Bacteriol., 79 (1960) 816-826

Mandels, M., Parrish, F. W. and Reese, E. T. “Sophorose as an inducer of cellulase in Trichoderma viride.” J. Bacteriol., 83 (1962) 400-408

Mandels, M., Andreotti R. and Roche, C. “Measurement of saccharifying cellulase.” Biotechnol. Bioeng. Symp., 6 (1976) 21-33

Mandels, M. and Sternberg, D. “Recent advances in cellulase technology.” J. Ferment. Technol., 54 (1976) 267-286

Mandels, M., Andreotti R. and Roche, C. “Measurement of saccharifying cellulase.” Biotechnol. Bioeng. Symp. 6 (1976) 21-33

Marengo, E., Robotti, E., Antonucci, F., Cecconi, D., Campostrini, N. and Righetti, P. G. “Numercial approaches for quantitative analysis of two-dimensional maps: A review of commercial software and home-made systems.” Proteomics, 5 (2005) 654-666

Margolles-clark, E., Tenkanen M., Söderlund H. and Penttilä M. “Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain.” Eur. J. Biochem., 237 (1996) 553-560

Markov, A. V., Gusakov, A. V., Kondratyeva, E. G., Okunev, O. N., Bekkarevich, A. O. and Sinitsyn, A. P. “New effective method for
analysis of the component composition of enzyme complexes from Trichoderma reesei.” Biochemistry, 70 (2005) 796-804

Merril, C. R., Switzer, R. C. and Keuren, M. L. V. “Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain.” Proc. Natl. Acad. Sci., 76 (1979) 4335-4339

Merril, C. R., Goldman, D. and Van Keuren, M. L. “Simplified silver protein detection and image enhancement methods in polyacrylamide gels.” Electrophoresis, 3 (1982) 17-23

Miller, G. L., Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 31 (1959) 426-428

Millet, M. A., Baker, A. J., Scatter, L. D. “Physical and chemical pretreatment for enhancing cellulose saccharification.” Biotech. Bioeng. Symp., 6 (1976) 125-153
Miyamoto, K. “Renewable biological systems for alternative sustainable energy production.” Food and Agriculture Organization of the United Nations (1997)
網址:http://www.fao.org/docrep/w7241e/w7241e00.htm(2006年)

Montenecourt, B. S. and Eveleigh, D. E. “Preparation of mutants of Trichoderma reesei with enhanced cellulase production.” Appl. Environ. Microbiol., 34 (1977) 777–782

Nandakumar, M. P., Shen. J., Raman, B. and Marten, M. R. “Solubilization of trichloroacetic acid (TCA) precipitated microbial proteins via NaOH for two-dimensional electrophoresis.” J. Proteome Res., 2 (2003) 89-93

Nelson, N. “A photometric adaptation of the Somogyi method for the determination of glucose.” J. Biol. Chem., 153 (1944) 375-381

Oakley, B. R., Kirsch, D. R. and Morris, N. R. “A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. ”
Anal. Biochem., 105 (1980) 361-363

O’Farrell, P. H. “High resolution two-dimensional electrophoresis of proteins.” J. Biol. Chem., 250 (1975) 4007-4021

Olsson, L., Christensen, T. M. I. E., Hansen, K. P. and Palmqvist, E. A. “Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30.” Enzyme Microb. Technol., 33 (2003) 612-619

One, S. E. and Pandey, A. “An evaluation of the use of two-dimensional gel electrophoresis in proteomics.” Biomol. Eng., 18 (2001) 195-205

Önnured, H., Zhang, L., Gellerstedt, G. and Henriksson, G.
“Polymerization of monolignols by redox shuttle–mediated enzymatic oxidation.” Plant Cell, 14 (2002) 1953-1962

Pakula, T. M., Uusitalo, J., Saloheimo, M., Salonen, K., Aarts, R. J. and Penttilá M. “Monitoring the kinetics of glycoprotein synthesis and secretion in the filamentous fungus Trichoderma reesei: cellobiohydrolase I (CBH I) as a model protein.” Microbiology, 146 (2000) 223-232

Perdew, G. H., Schaup, H. W. and Selivonchick, D. P. “The use of a zwitterionic detergent in two-dimensional gel electrophoresis of trout liver microsomes.” Anal. Biochem., 135 (1983) 453-455

Ramos, L. P. “The chemistry involved in the steam treatment of lignocellulosic materials.” Quim. Nova, 26 (2003) 863-871

Rabilloud, T. “Mechanisms of protein silver staining in polyacrylamide gels: A 10-year synthesis.” Electrophoresis, 11 (1990) 785-794

Rabilloud, T. “A comparison between low background silver diammine and silver nitrate protein stains.” Electrophoresis, 13 (1992) 429-439

Rabilloud, T. “Solubilization of proteins for electrophoretic analysis.” Electrophoresis, 17 (1996) 813-829

Rabilloud, T. “Use of thiourea to increase the solubilization for separation using two-dimensional electrophoresis.” Electrophoresis, 18 (1998) 125-127

Raymond, S. and Weintraub, L. “Acrylamide gel as a supporting medium for zone electrophoresis” Science, 130 (1959) 711

Reczey, K., Szengyel, Z., Eklund, R. and Zacchi, G. “Cellulase production by T. reesei. ” Bioresour. Technol., 57 (1996) 25-30

Ryu, D. D. Y. and Mandels, M. “Cellulases: biosynthesis and applications.” Enzyme Microb. Technol., 2 (1980) 91-102

Saha, R. C. “Hemicellulose bioconversion.” J. Ind. Microbiol. Biotechnol., 30 (2003) 279-291

Shallom, D. and Shoham, Y. “Microbial hemicellulases.” Curr. Opin. Microbiol., 6 (2003) 219-228

Shapiro, A. L., Vinuela, E. and Maizel, J. V. J. “Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels.” Biochem. Biophys. Res. Commun., 28 (1967) 815-820

Sharma, S. K., Kalra, K. L. and Grewal, H. S. “Fermentation of enzymatically saccharified sunflower stalks for ethanol production and its scale up.” Bioresour. Technol., 85 (2002) 31-33

Shaw, M. M. and Riederer, B. M. “Sample preparation for two-dimensional gel electrophoresis.” Proteomics, 3 (2003) 1408-1417

Shin, C. S., Lee, J. P., Lee, J. S. and Park, S. C. “Enzyme production of Trichoderma reesei Rut C-30 on various lignocellulosic substrates.” Appl. Biochem. Biotechnol., 84-86 (2000) 237-245

Shuler, M. L. and Kargi, F. “Bioprocess engineering, basic concept.” 2nd edition, Prentice Hall, Inc.

Somogyi, M. “Note on suger determination.” J. Biol. Chem., 195 (1952) 19-23

Sternberg, D. and Mandels, G. R. “Induction of cellulolytic enzymes in Trichoderma reesei by sophorose.” J. Bacteriol., 139 (1979) 761–769

Sun, Y. and Cheng, J. “Hydrolysis of lignocellulosic materials for ethanol production: a review.” Bioresour. Technol., 83 (2002) 1-11

Sundberg M. and Poutanen K. “Purification and properties of two acetylxylan esterases of Trichoderma reesei.” Biotechnol. Appl. Biochem., 13 (1991) 1-11

Szengyel, Z., Zacchi, G., Varga, A. and Réczey, K. “Cellulase production of Trichoderma reesei Rut C 30 using steam-pretreated spruce.” Appl. Biochem. Biotechnol., 84-86 (2000) 679-691

Szijártó, N., Szengyel, Z., Lidén, G. and Réczey, K. “Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose.” Appl. Biochem. Biotechnol., 113-116 (2004) 115-124

Tanaka, M. and Matsuno, R. “n-Butylamine and acid-steam explosion pretreatments of rice straw and hardwood : effects on substrate structure and enzymatic hydrolysis.” Enzyme Microb. Technol., 12 (1990) 190-195

Tangnu, S. K., Blanch, H. W. and Wilke, C. R. “Enhanced production of cellulase, hemicellulase and β-glucosidase by Trichoderma reesei (Rut C-30)” Biotechnol. Bioeng., 23 (1981) 1837-1849

Terry, T. T. “Crystalline cellulose degradation : new insight into the function of cellobiohydrolases.” Trends in Biotechnol., 15 (1997) 160-167

Thompson, D. N., Chen, H. C. and Grethlein, H. E. “Comparison of pretreatment methods on the basis of available surface area.” Bioresour. Technol., 39 (1991) 155-163

Toyama, H., Yano, M. and Hotta, T. “Polykaryon formation using swollen conidium of Trichoderma reesei.” Appl. Biochem. Biotechnol., 113-116 (2004) 325-334

Velkovska, S., Marten, M. R. and Ollis, D. F. “Kinetic model for batch cellulase production by Trichoderma reesei RUT C30.” J. Biotechnol., 54 (1997) 83-94

Vinzant T. B., Adney W. S., Decker S. R., Baker J. O., Kinter M. T., Sherman N. E., Fox J. W., and Himmel M. E. “Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation.” Appl. Biochem. Biotechnol., 91-93 (2001) 99-107

Weber, J. and Agblevor, F. A. “Microbubble fermentation of Trichoderma reesei for cellulase production.” Process Biochem., 40 (2005) 669-676

Weil, J., Westgate, P., Kohlmann, K. and Ladisch, M. R. “Cellulose pretreatments of lignocellulosic substrates.” Enzyme Microb. Technol., 16 (1994) 1002-1004

Wen, Z., Liao, W. and Chen, S. “Production of cellulase by Trichoderma reesei from dairy manure.” Bioresour. Technol., 96 (2005) 491-499

Xiong, H., Weymarn, N. V., Turunen, O., Leisola, M. and Pastinen, O. “Xylanase production by Trichoderma reesei Rut C-30 grown on L-arabinose-rich plant hydrolysates.” Bioresour. Technol., 96 (2005) 753-759
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top