|
1.Montagnier, L., “A history of HIV discovery,” Science, 29, 1727–1728, 2002. 2.Kreuter, J., Tauber, U., Illi, V., “Distribution and elimination of poly(methyl-2-[14C]methacrylate) nanoparticle radioactivity after injection in rats and mice” J. Pharm. Sci., 68, 1443–1447, 1979. 3.Kreuter, J., “Colloidal drug delivery system”, Mercel Dekker, New York, pp.201–223, 1994. 4.Pardidge, W. M., “Brain drug targeting: the future of brain drug development,” Cambridge University Press, New York, pp. 50–51, 2001. 5.Kreuter, J., “Nanoparticle systems for brain delivery of drugs,” Adv. Drug Deliv. Rev., 47, 68–81, 2001. 6.Couvreur, P., Kante, B., Roland, M., Guiot, P., Bauduin, P., “Polycyanoacrylate nanoparticles as potential lysosomotropic carrier: preparation, morphological and sorptive properties,” J. Pharm. Pharmacol., 31, 331–332, 1982. 7.Stenekes, R. J. H., Loebis, A. E., Fernandes, C. M., Crommelin, D. J. A., Hennick, W. E., “Controlled release of liposomes from biodegradable dextran microspheres: a novel delivery concept,” Pharm. Res., 17, 690–695, 2000. 8.Kriwet, B., Tucker, C. J., Kalantar, T. H., Green, D. P., “Synthesis of bioadhensive poly (acrylic acid) nano- and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates,” J. Control. Rel., 56, 149–158, 1998. 9.Cavalli, R., Caputo, O., Gasco, M. R., “Preparation and characterization of solid lipid nanospheres containing paclitaxel,” Eur. J. Pharm. Sci., 10, 305–309, 2000. 10.Barrant, G. M., “Therapeutic applications of colloidal drug carriers,” Pharm. Sci., 3, 163–171, 2000. 11.Baranczyk-kuzma, A., Audus, K. L., Borcharolt, R. T., “Catecholamine metabolizing enzymes of bovine brain microvessel endothelial cell monolayers,” J. Neurochem., 46, 195–1960, 1986. 12.Abbott, N. J., Romero, L. A., “Transporting therapeutics across the blood-brain barrier,” Mol. Med. Today, 2, 106–113, 1996. 13.Tsuji, A., Terasaki, T., Takabatake, Y., Tenda, Y., Tamai, I., Yamashima, T., Moritani, S., Tsuruo, T., Yamashita, J., “P-Glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells,” Life Sci. 51,1427–1437, 1992. 14.Tatsuta, T., Tsuruo, T., “Functional involvement of P-glycoprotein in blood–brain barrier,” J. Biol. Chem., 267, 20383–20391, 1992. 15.Ghazanfari, F. A., Stewart, R. R., “Characteristics of endothelial cells derived from the blood-brain barrier and of astrocytes in culture,” Brain Res., 890, 49–65, 2001. 16.Mcallister, M. S., Macchia, F., Naftalin, R. J., Pedley, C. K., Mayberg, M. R., Marroni, M., Leaman, S., Stanness, K. A., Janigro, D., “Mechanisms of glucose transport at the blood-brain barrier: an in vitro study,” Brain Res., 409, 20–30, 2001. 17.Terasaki, T., Ohtsuki, S., Hori, S., Takanaga, H., Nakashima, E., Hosoya, K. I., “New approaches to in vitro models of blood-brain barrier drug transport,” Drug Discovery Today, 20, 944–948, 2003. 18.Li, X., Chan, W. K., “Transport, metabolism and elimination mechanisms of anti-HIV agents,” Adv. Drug Deliv. Rev., 39, 81–103, 1999. 19.Lemberg, D. A., Palasanthiran, P., Goode, M., Ziegler, J. B., “Tolerabilities of antiretrovirals in paediatric HIV infection,” Drug Safety, 25, 973–991, 2002. 20.Strazielle, N., Francois, J., Egea, G., “Factors affecting delivery of antiviral drugs to the brain,” Rev. Med. Virol., 15, 105–133, 2005. 21.Strazielle, N., Ghersi–Egea, J. F., “Factors affecting delivery of antiviral drugs to the brain.” Rev. Med. Virol., 15, 105–133, 2005. 22.Petra, S., Ulrike, S., Bernhard, A. S., “Long–term stability of PBCA nanoparticle suspensions suggests clinical usefulness,” Int. J. Pharm., 155, 201–207, 1997. 23.Kreuter, J., Alyautdin, R. N., Kharkevich, D. A., Ivanov, A. A., “Passage of peptides through are blood-brain barrier with colloidal polymer particles (nanoparticles),” Brain Res., 674, 171–174, 1995. 24.Kreuter, J., Alyautdin, R. N., Kharkevich, D. A., Petrov, V. E., Langer, K., Berthold, A., “Delivery of lopermide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles,” Pharm. Res., 14, 325–328, 1997. 25.Niemeggers, C. J. E., Lenaerts, F. M., Janssen, P. A., “Loperamide (R 18553), a novel type of antidiarrheal agent,” Arzneimittelforschung., 24, 1633–1641, 1974. 26.Kreuter, J., Bradbury, M. W., Begley, D. J., “The blood-brain barrier and drug delivery to the CNS,” Marcel Dekker, New York, pp. 121–146, 2000. 27.Hoffmann, F., Cinatl, Jr., Kabickova, H., Cinatl, J., Kreuter, J., Stieneker, F., “Preparation, characterization and cytoxicity of methylmethacrylate copolymer nanoparticles with a permanent positive surface charge,” Int. J. Pharm., 157, 189–198, 1997. 28.Langer, K., Marburger, C., Berthold, A., Kreuter, J., Stieneker, F., “Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery. part Ι: preparation and physicochemical characterization,” Int. J. Pharm., 137, 67–74, 1996. 29.Langer, K., Stieneker, F., Lambrecht, G., Mutschler, E., Kreuter, J., “Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delively. part Π: arecaidine propargly ester and pilocarpine loading and in vitro release,” Int. J. Pharm., 158, 211–217, 1997. 30.Kuo, Y. C., Chung, C. T., “Transport of zidovudine- and lamivudine-loaded polybutylcyanoacrylate and methylmethacrylate-sulfoproplylmethacrylate nanoparticles across the in vitro blood-brain barrier: characteristics of the drug-delivery system,” J. Chin. Inst. Chem. Engrs., 36, 627–638, 2005. 31.Wang, J. X., Sun, X., Zhang, Z. R., “Enhanced brain targeting by synthesis of 3’,5’-dioctanoyl-5-fluoro-2’-deoxyuridine and incorporation into solid lipid nanoparticles,” Eur. J. Pharm. Biopharm., 54, 285–290, 2002. 32.Bargoni, A., Cavalli, R., Caputo, O., Fundaro, A., Gasco, M. R., Zara, G. P., “Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats,” Pharm. Res., 15, 745–750, 1998. 33.Abbott, N. J., Romero, L. A., “Transporting therapeutics across the blood-brain barrier,” Mol. Med. Today, 2, 106–113, 1996. 34.Fundrao, A., Cavalli, R., Bargoni, A., Vighetto, D., Zara, G., Gasco, M. R., “Non-stealth and solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i. v. administration to rats,” Pharm. Res., 42, 337–343, 2000. 35.Yang, S. C., Lu, L. F., Cai, Y., Zhu, J. B., Liang, B. W., Yang, C. Z., “Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect of brain,” J. Control. Rel., 59, 299–307, 1999. 36.Sukriti, N., “Blood-brain barrier: biology and research protocols,” Humana Press, New York, pp. 145–160, 2003. 37.Hardebo, J. E., Kahrstrom, J., “Endothelial negative surface charge areas and blood-brain barrier function,” Acta. Physiol. Scand., 125, 495–499, 1985. 38.Fenart, L., Casanova, A., Dehock, B., Duhem, C., Slupek, S., Cecchelli, R., Betbeder, D., “Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood brain barrier,” Parmacol. Exp. Ther., 291, 1017–1022, 1999. 39.Lockmam, R. P., Koziara, M. J., Mumper, R. J., Allen, D. D., “Nanoparticle surface charges alter blood brain barrier integrity and permeability,” J. Drug Target, 12, 635–641, 2004. 40.Asperen, J. V., Mayer, U., Tellingen, O. V., Beijnen, J. H., “The functional role of P-glycoprotein in the blood-brain barrier,” J. Pharm. Sci., 86, 881–884, 1997. 41.Thorgeirsson, S. S., Silverman, J. A., Grant, T. W., Marino, P. A., “Multidrug resistance gene family and chemical carcinogens,” J. Clin. Pharm. Ther., 49, 283–292, 1991. 42.Persidis, A., “Cancer multidrug resistance,” Nat. Biotechnol., 18, 18–20, 2000. 43.Hsiang, Y. H., Hertzberg, R., Hecht, S., Liu, L. F., “Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I,” Biol. Chem., 260, 14873–14878, 1985. 44.Oscar, K. J., Hawkins, T. D., “Microwave alteration of the blood-brain barrier system of rats,” Brain Res., 126, 281–293, 1977. 45.Williams, W. M., Lu, S. T., Cerro, M. D., Hoss, W., Michaelson, S. M., “Effect of 2450-MHz microwave energy on the blood-brain barrier: an overview and critique of past and present research,” Microwave Theory and Techniques, 8, 808–818, 1984. 46.Schirmacher, A., Winters, S., Fischer, S., Goeke, J., Galla, H. J., Kullnick, U., Ringelstein, E. B., Stogbauer, F., “Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the blood-brain barrier in vitro,” Bioelectromagnetics, 21, 338–345, 2000. 47.Albert, E. N., Kerns, J. M., “Reversible microwave effects on the blood-brain barrier,” Brain Res., 230, 153–164, 1981. 48.Williams, W. M., Hoss, W., Formaniak, M., Michaelson, S. M., “Effect of 2450-MHz microwave energy on the blood-brain barrier to hydrophilic molecules: effect on the permeability to HRP (horseradish peroxidase),” Brain Res. Rev., 7, 171–181, 1984. 49.Kreuter, J., Alyautdin, R. N., Kharkevich, D. A., Tezikov E. B., Ramge, P., Begley, D. J., “Significant entry of tubocurarine into brain of rats by adsorption to polysorbate 80-coated polybutyl-cyanoacrylate nanoparticles: an in situ brain perfusion study,” J. Microencapsul., 15, 67–74, 1998. 50.Zara, G. P., Cavalli, R., Fundaro, A., Bargoni, A., Caputo, O., Gasco, M. R., “Pharmacokinetics of doxorubicin incorporated in sold lipid nanospheres (SLN),” Pharm. Res., 40, 281–286, 1999. 51.Schroeder, U., Sabel, B. A., Schroeder, H., “Diffusion enhancement of drugs by loaded nanoparticles in vitro,” Neuro-Psychopharmacol. Biol. Psychiat., 23, 941–949, 1999. 52.Roberta, C., Otto, C., Maria, E. C., Michele, T., Carmela, S., Maria, R. G., “Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles,” Int J Pharm., 148, 47–54, 1997. 53.Glynn, S. L., “In vitro blood-brain barrier premeabily of nevirapine compared to other HIV antiretroviral agents,” J. Pharm. Sci., 87, 306–310, 1998. 54.Kuo, Y. C., “Loading efficiency of stavudine on polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate copolymer nanoparticles,” Int. J. Pharm., 290, 161–172, 2005. 55.Davda, J., Labhasetwar, V., “Characterization of nanoparticle uptake by endothelial cells,” Int. J. Pharm., 233, 51–59, 2002. 56.Panyam, J., Sahoo, S. K., Prabha, S., Bargar, T., Labhasetwar, V., “Fluorescence and electron microscopy probes for cellular and tissue uptake of poly (D,L-lactide-co-glycolide) nanoparticles,” Int. J. Pharm., 262, 1–11, 2003. 57.Berridge, M. V., Tan, A. S. “Characterization of the cellular reduction MTT: subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction,” Arch. Biochem. Biophys., 303, 474–482, 1993. 58.Pieter, G. J., Albertus, G. B., “Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug,” Eur. J. Pharm. Sci., 12, 95–102, 2000. 59.Liend, R., Padilla, F. C., Quintana, A., “Characterization of cocoa butter extracted from Criollo cultivars of Theobroma cacao L.,” Food Res. Int., 30, 727–731, 1997. 60.David, Q. G., David, T. E., Adriana, G. Q., Eric, A., Eric, D., “Adaptation and optimization of the emulsification-diffusion technique to prepare lipidic nanospheres,” Eur. J. Pharm. Sci., 26, 211–218, 2005. 61.蘇福隆, “以PBCA、MMASPM和SLN為Stavudine、Delavirdine及Squinavir載體之生體外血腦阻障穿透,” 中正化工所論文, 2005. 62.Ari, M., Piia, P., Jonne, N., Jukka, P., Ari, P. S., Jukka, J., “Apoptosis induced by ultraviolet radiation is enhenced by amplitude modulated rediofrequency radiation in mutant yeast cells,” Bioelectromagnetics, 25, 127–133, 2004. 63.Tröster, S. D., Kreuter, J., “Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles,” J. Microencapsul., 9, 19–28, 1992. 64.Alyaudtin, R., Reichel, A., Löbenberg, R., Ramge, P., Kreuter, J., Begley, D., “Interaction of poly (butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro,” J. Drug Target, 9, 209–221, 2001. 65.Dehouck, B., Fenart, L., Dehouck, M. P., Pierce, A., Torpier, G., Cecchelli, R., “A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier,” J. Cell Biol., 138, 877–889, 1997. 66.Glynn, S. L., “In vitro blood-brain barrier premeabily of nevirapine compared to other HIV antiretroviral agents,” J. Pharm. Sci., 87, 306–310, 1998. 67.Krogh A. “The active and passive exchanges of inorganic ions though the surfaces of living cells and though living membranes generally,” Proc. Roy. Soc. Loud. B 133, 140–200, 1946. 68.Gabriel, S., Lau, R. W., Gabriel, C., “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phy. Med. Boil., 41, 2251–2269, 1996. 69.Leif, G. S., Arne, B., Kerstin, S., Jacob, L. E., Bertil R. R., “Permeability of blood-brain barrier induces by 915 MHz electromagnetic radiation, continuous wave and modulation at 8, 16, 50, and 200 Hz,” Microsc. Res. Tech. 27, 535–542, 1994. 70.Abair, E. N., Slaby, F., Roche, J., Loftus, J., “Effect of amplitude modulated 147 MHz radiofreqency radiation on calcium ion efflux from avian brain tissue,” Radiat. Res., 109, 19–27, 1987. 71.Blackman, C. F., Elder, J. A., Weil, C. M., Benane, S. G., Eichinger, D. C., House, D. E., “Induction of calcium-ion efflux from brain tissue by radio-frequency radiation: effects of modulation frequency and field strength,” Radio Sci., 14, 93–98, 1979. 72.Akhteruzzaman, M., Hongmei, M., Sudthida, V., Lixin, H., C. Thomas, L., Ann, H., Dale, J. K., “In Vitro antiviral interaction of lopinavir with other protease inhibitors,” Antimicrob. Agents Chemother, 46, 2249–2253, 2002. 73.Bonincontro, A., Mariutti, G., “Influence of hypertheria, pH and culturing conditions on the eletrical parameters of Chinese hamster V79 cells,” Phy. Med. Biol., 33, 557–568, 1988. 74.Huang, F., Subbaiah, P. V., Holian, O., Zhang, J., Johnson, A., Gertzberg, N., Lum, H., “Lysophosphatidylcholine increases endothelial permeability: role of PKCa and RhoA cross talk,” Am J Physiol Lung Cell Mol Physiol, 289, 176–185, 2005. 75.Marinelli, F., La Sala, D., Cicciotti, G., Cattini, L., Trimarchi, C., Putti, S., Zamparelli, A., Giuliani, L. Tomassetti, G., Cinti, C., “Exposure to 900 MHz Electromagnetic Field Inducesan Unbalance Between Pro-Apoptotic and Pro-SurvivalSignals in T-Lymphoblastoid Leukemia CCRF-CEM Cells,” J. Cell Physiol., 198, 324–332, 2004.
|