跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:ac57:fc92:1c8d:566e) 您好!臺灣時間:2025/01/14 08:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭展穎
研究生(外文):Jhan-ying Guo
論文名稱:PBCA、MMA-SPM及SLN包載Saquinavir在電磁場中的血腦阻障穿透
論文名稱(外文):Transport of Saquinavir across an In Vitro model of the Blood-Brain Barrier at electromagnetic field by PBCA、MMA-SPM Nanoparticles and SLN
指導教授:郭勇志郭勇志引用關係
指導教授(外文):Yong-chih Guo
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:118
中文關鍵詞:血腦阻障電磁場
外文關鍵詞:BBBSLNPBCAMMA-SPM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用polybutylcyanoacrylate (PBCA) nanoparticles、methylmethacrylate-sulfopropylmethacrylate (MMA-SPM) nanoparticles和solid lipid nanoparticles (SLN)為saquinavir (SQV)載體,於電磁場環境下,奈米粒子(nanoparticles)包載藥物進行生體外血腦阻障(blood brain barrier, BBB)模型穿透的研究,以繼代培養人腦微血管內皮細胞(human brain micrpvessel endothelial cells, HBMECs)來建立生體外BBB模型。SLN的粒徑會隨著可可脂(cacao butter)的加入量增加而變大,而細胞毒性則隨可可脂加入量增加而降低。而由電磁場強度對細胞的影響實驗中發現,在電磁場強度在10及20 mW下,細胞會因為電磁場強度大而導致形變甚至凋亡的現象。而在穿透實驗方面,SQV藥物負載於奈米粒子對於穿透率的提升次序為:SLN>PBCA>MMA-SPM。當在穿透實驗中加入電磁場後,奈米粒子的穿透會隨著電磁場頻率增加而提升,提升的次序為:915 MHz>750 MHz>433 MHz>27.12 MHz>non-EMF。在波型對於奈米粒子穿透的提升以方波(square wave)為最高。波幅調控(amplitude modulation, AM)及頻率調控(frequency modulation, FM)的modulation對於奈米粒子穿透的提昇則為:20 MHz>16.7 MHz>13.3 MHz>10 MHz。AM depth對於奈米粒子穿透提升:100%>66.7%>33.3%>0%。以及FM deviation對奈米粒子穿透提升為:400 kHz>266.7 kHz>133.3 kHz>2 kHz。
This research uses polybutylcyanoacrylate (PBCA ) nanoparticles, methylmethacrylate-sulfopropylmethacrylate (MMA-SPM) nanoparticles and solid lipid nanoparticles (SLN ) as saquinavir (SQV ) carriers, under electric magnetic field environment. Nanoparticle were entrap drug to permeat In vitro blood-brain barrier model. Diameter of SLN would increase with the amount of cacao butter enhance, but cytotoxity decrease. And find from the electric experiment of impact on cell of intensity of magnetic field, under 10 and 20 mW in the electric intensity of magnetic field, phenomenon that die that the cell will cause deformation even wither because the electric magnetic field is large in intensity. In the transport experience,the medicine load of SQV is enduring the improvement order to the permeability of nanoparticle: SLN> PBCA> MMA-SPM. Transport experience with EMF, the permeability of nanoparticle will be improved as EMF frequency increases, the order improved is: 915 MHz> 750 MHz> 433 MHz> 27.12 MHz> non-EMF. Regard square wave as highest in the wave type improvement permeability of nanoparticle. The amplitude modulation (AM) and that frequency modulation (FM ) is for promotion the permeability of nanoparticle: 20 MHz> 16.7 MHz> 13.3 MHz> 10 MHz. AM depth is improved for permeability of nanoparticle: 100%> 66.7%> 33.3%> 0%. And FM deviation is improved to the permeability of nanoparticle: 400 kHz> 266.7 kHz> 133.3 kHz> 2 kHz.
目錄
中文摘要………………………………………………………………….I
英文摘要………………………………………………………………..III
目錄……………………………………………………………………..IX
圖目錄…………………………………………………………………..X
表目錄………………………………………………………………….XII
第一章 緒論
1.1人類免疫缺陷病毒…………………………………………………..1
1.2 藥物載體……………………………………………………………...2
1.3 電磁場………………………………………………………………...2
1.4 研究動機與目的……………………………………………………...3

第二章 文獻回顧
2.1血腦阻障……………………………………………………………..4
2.2生體外BBB模型……………………………………………………5
2.3藥物saquinavir簡介…………………………………………………6
2.4藥物載體與血腦阻障………………………………………………..6
2.4.1 polybutylcyanoacrylate (PBCA)……………………………….6
2.4.2 methylmethacrylate-sulfopropylmeth- acrylate (MMA-SPM)
………………………………………………………………...7
2.4.3 固態脂質奈米粒子(solid lipid nanoparticle, SLN)…………..8
2.4.4 表面電荷與血腦阻障………………………………………...9

2.4.5 親疏水性與血腦阻障………………………………………..10
2.6 電磁場與血腦阻障………………………………………………...11

第三章 實驗材料、儀器、原理及方法
3.1 實驗材料…………………………………………………………...14
3.1.1 人腦微血管內皮細胞培養PC膜表面預處理所用材料……14
3.1.2 人腦微血管內皮細胞繼代培養所用材料………………….14
3.1.3 人腦微血管內皮細胞保存所用材料……………………….15
3.1.4 免疫螢光法所用的材料…………………………………….15
3.1.5 奈米粒子合成與乾燥所用材料
3.1.5.1 PBCA奈米粒子合成…………………………………..15
3.1.5.2 MMA-SPM copolymer奈米粒子合成………………...16
3.1.5.3 SLN合成……………………………………………….16
3.1.5.4 PBCA、MMA-SPM奈米粒子和SLN的乾燥所用材料17
3.1.6 藥物之吸收波長量測所用材料…………………………….17
3.1.7 抗HIV藥負載所用材料……………………………………..17
3.1.8 奈米粒子表面包覆所用材料……………………………….18
3.1.9 抗HIV藥負載於奈米粒子之FT-IR分析所用材料…………18
3.1.10藥物穿透實驗所用材料…………………………….18
3.1.11螢光奈米粒子與螢光SLN………………………….18
3.1.12 毒性測試與電阻測定……………………………………...18
3.1.13 其他實驗器具和耗材……………………………………...19
3.2 實驗儀器…………………………………………………………...21
3.3 實驗原理與方法
3.3.1 人腦內皮細胞培養PC膜的表面預處理……………………25
3.3.2 培養細胞用的培養基配製步驟…………………………….26
3.3.3 冷凍液配製步驟…………………………………………….26
3.3.4 Trypsin-EDTA 配製步驟……………………………………26
3.3.5 繼代培養之培養皿預處理…………………………………26
3.3.6 人腦微血管內皮細胞繼代培養……………………………26
3.3.7 人腦微血管內皮細胞培養…………………………………27
3.3.7.1 人腦微血管內皮細胞培養PC膜之實驗…………………27
3.3.7.2 人腦微血管內皮細胞緊密接合(tight-junction, TJ)特性的鑑定…………………………………………………………28
3.3.8 奈米粒子合成
3.3.8.1.1 PBCA奈米粒子合成……………………………………29
3.3.8.1.2 螢光PBCA奈米粒子合成……………………………...29
3.3.8.2.1 MMA-SPM奈米粒子合成………………………………30
3.3.8.2.2 螢光MMA-SPM奈米粒子製備………………………...30
3.3.8.3.1 SLN合成…………………………………………………31
3.3.8.3.2 螢光SLN製備……………………………………………31
3.3.9 抗HIV藥的吸收波長量測……………………………………….32
3.3.10 奈米粒子負載與包覆…………………………………………..32
3.3.10.1 抗HIV藥在PBCA和MMA-SPM上負載及奈米粒子包覆
…………………………………………………………..32
3.3.10.2 抗HIV藥被包覆在SLN………………………………….33
3.3.10.3 以不同中間相比例合成SLN來包覆藥物………………33
3.3.10.4 抗HIV藥負載於奈米粒子與包覆在SLN內之FT-IR分析
…………………………………………………………...34
3.3.10.5 SLN zeta potential 測定…………………………………..34
3.3.11 抗HIV藥的生體外BBB模型穿透實驗
3.3.11.1 SQV的穿透實驗………………………………………..35
3.3.11.2 抗HIV藥物負載於奈米粒子且被polysorbate 80包覆之穿透實驗…………………………………………………………35
3.3.11.3 包覆抗HIV藥物之SLN穿透實驗………………………..36
3.3.11.4 PBCA及MMA-SPM於電磁場影響下之穿透實驗………37
3.3.11.5 SLN於電磁場影響下之穿透實驗………………………..37
3.3.11.5 物質穿透生體外BBB模型之穿透率係數計算…………37
3.3.11.5.1 抗HIV藥物負載於奈米粒子且被polysorbate 80包覆之穿透率計算…………………………………………….38
3.3.11.5.2 包覆抗HIV藥物之SLN穿透率計算…………………..39
3.3.11.6 奈米粒子被人腦微血管內皮細胞吸收…………………39
3.3.12 奈米粒子對細胞毒性測試與細胞電阻測定……………...40

第四章 結果與討論
4.1 SLN粒徑分析與鑑定………………………………………………43
4.1.1 Zeta sizer 3000………………………………………………..43
4.1.2 FE-SEM………………………………………………………43
4.1.3 AFM…………………………………………………………..43
4.2 SLN對SQV的包載
4.2.1 不同比例的可可脂與山渝酸為脂質主體包覆SQV………43
4.2.2不同的SQV加入量對於SLN包載的包覆率………………44
4.2.3 不同轉速對於SLN在SQV之包覆率………………………44
4.3 SLN對於細胞毒性測試與細胞電阻測定
4.3.1 不同比例的可可脂與山渝酸為脂質主體對細胞的影響….45
4.3.2 不同的SQV加入量對細胞的影響………………………...45
4.3.3不同粒徑的SLN對細胞的影響……………………………46
4.4 電磁場強度作用於HBMECs的實驗…………………………….46
4.5 藥物與奈米粒子之紅外線光譜實驗……………………………..47
4.6 生體外BBB穿透實驗
4.6.1 PBCA、MMA-SPM和SLN在無電磁場下的穿透實驗….48
4.6.2 PBCA、MMA-SPM和SLN在電磁場環境下的穿透實驗.49
4.7 在電磁場條件下奈米粒子被HBNECs吸收實驗……………….51
4.8 人腦微血管內皮細胞的緊密接合(tight-junction, TJ)於電磁場下的鑑定……………………………………………………………….52

第五章 結論與建議
5.1 結論……………………………………………………………….54
5.2 建議……………………………………………………………….55
參考文獻………………………………………………………………56
附錄……………………………………………………………………99
1.Montagnier, L., “A history of HIV discovery,” Science, 29, 1727–1728, 2002.
2.Kreuter, J., Tauber, U., Illi, V., “Distribution and elimination of poly(methyl-2-[14C]methacrylate) nanoparticle radioactivity after injection in rats and mice” J. Pharm. Sci., 68, 1443–1447, 1979.
3.Kreuter, J., “Colloidal drug delivery system”, Mercel Dekker, New York, pp.201–223, 1994.
4.Pardidge, W. M., “Brain drug targeting: the future of brain drug development,” Cambridge University Press, New York, pp. 50–51, 2001.
5.Kreuter, J., “Nanoparticle systems for brain delivery of drugs,” Adv. Drug Deliv. Rev., 47, 68–81, 2001.
6.Couvreur, P., Kante, B., Roland, M., Guiot, P., Bauduin, P., “Polycyanoacrylate nanoparticles as potential lysosomotropic carrier: preparation, morphological and sorptive properties,” J. Pharm. Pharmacol., 31, 331–332, 1982.
7.Stenekes, R. J. H., Loebis, A. E., Fernandes, C. M., Crommelin, D. J. A., Hennick, W. E., “Controlled release of liposomes from biodegradable dextran microspheres: a novel delivery concept,” Pharm. Res., 17, 690–695, 2000.
8.Kriwet, B., Tucker, C. J., Kalantar, T. H., Green, D. P., “Synthesis of bioadhensive poly (acrylic acid) nano- and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates,” J. Control. Rel., 56, 149–158, 1998.
9.Cavalli, R., Caputo, O., Gasco, M. R., “Preparation and characterization of solid lipid nanospheres containing paclitaxel,” Eur. J. Pharm. Sci., 10, 305–309, 2000.
10.Barrant, G. M., “Therapeutic applications of colloidal drug carriers,” Pharm. Sci., 3, 163–171, 2000.
11.Baranczyk-kuzma, A., Audus, K. L., Borcharolt, R. T., “Catecholamine metabolizing enzymes of bovine brain microvessel endothelial cell monolayers,” J. Neurochem., 46, 195–1960, 1986.
12.Abbott, N. J., Romero, L. A., “Transporting therapeutics across the blood-brain barrier,” Mol. Med. Today, 2, 106–113, 1996.
13.Tsuji, A., Terasaki, T., Takabatake, Y., Tenda, Y., Tamai, I., Yamashima, T., Moritani, S., Tsuruo, T., Yamashita, J., “P-Glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells,” Life Sci. 51,1427–1437, 1992.
14.Tatsuta, T., Tsuruo, T., “Functional involvement of P-glycoprotein in blood–brain barrier,” J. Biol. Chem., 267, 20383–20391, 1992.
15.Ghazanfari, F. A., Stewart, R. R., “Characteristics of endothelial cells derived from the blood-brain barrier and of astrocytes in culture,” Brain Res., 890, 49–65, 2001.
16.Mcallister, M. S., Macchia, F., Naftalin, R. J., Pedley, C. K., Mayberg, M. R., Marroni, M., Leaman, S., Stanness, K. A., Janigro, D., “Mechanisms of glucose transport at the blood-brain barrier: an in vitro study,” Brain Res., 409, 20–30, 2001.
17.Terasaki, T., Ohtsuki, S., Hori, S., Takanaga, H., Nakashima, E., Hosoya, K. I., “New approaches to in vitro models of blood-brain barrier drug transport,” Drug Discovery Today, 20, 944–948, 2003.
18.Li, X., Chan, W. K., “Transport, metabolism and elimination mechanisms of anti-HIV agents,” Adv. Drug Deliv. Rev., 39, 81–103, 1999.
19.Lemberg, D. A., Palasanthiran, P., Goode, M., Ziegler, J. B., “Tolerabilities of antiretrovirals in paediatric HIV infection,” Drug Safety, 25, 973–991, 2002.
20.Strazielle, N., Francois, J., Egea, G., “Factors affecting delivery of antiviral drugs to the brain,” Rev. Med. Virol., 15, 105–133, 2005.
21.Strazielle, N., Ghersi–Egea, J. F., “Factors affecting delivery of antiviral drugs to the brain.” Rev. Med. Virol., 15, 105–133, 2005.
22.Petra, S., Ulrike, S., Bernhard, A. S., “Long–term stability of PBCA nanoparticle suspensions suggests clinical usefulness,” Int. J. Pharm., 155, 201–207, 1997.
23.Kreuter, J., Alyautdin, R. N., Kharkevich, D. A., Ivanov, A. A., “Passage of peptides through are blood-brain barrier with colloidal polymer particles (nanoparticles),” Brain Res., 674, 171–174, 1995.
24.Kreuter, J., Alyautdin, R. N., Kharkevich, D. A., Petrov, V. E., Langer, K., Berthold, A., “Delivery of lopermide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles,” Pharm. Res., 14, 325–328, 1997.
25.Niemeggers, C. J. E., Lenaerts, F. M., Janssen, P. A., “Loperamide (R 18553), a novel type of antidiarrheal agent,” Arzneimittelforschung., 24, 1633–1641, 1974.
26.Kreuter, J., Bradbury, M. W., Begley, D. J., “The blood-brain barrier and drug delivery to the CNS,” Marcel Dekker, New York, pp. 121–146, 2000.
27.Hoffmann, F., Cinatl, Jr., Kabickova, H., Cinatl, J., Kreuter, J., Stieneker, F., “Preparation, characterization and cytoxicity of methylmethacrylate copolymer nanoparticles with a permanent positive surface charge,” Int. J. Pharm., 157, 189–198, 1997.
28.Langer, K., Marburger, C., Berthold, A., Kreuter, J., Stieneker, F., “Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery. part Ι: preparation and physicochemical characterization,” Int. J. Pharm., 137, 67–74, 1996.
29.Langer, K., Stieneker, F., Lambrecht, G., Mutschler, E., Kreuter, J., “Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delively. part Π: arecaidine propargly ester and pilocarpine loading and in vitro release,” Int. J. Pharm., 158, 211–217, 1997.
30.Kuo, Y. C., Chung, C. T., “Transport of zidovudine- and lamivudine-loaded polybutylcyanoacrylate and methylmethacrylate-sulfoproplylmethacrylate nanoparticles across the in vitro blood-brain barrier: characteristics of the drug-delivery system,” J. Chin. Inst. Chem. Engrs., 36, 627–638, 2005.
31.Wang, J. X., Sun, X., Zhang, Z. R., “Enhanced brain targeting by synthesis of 3’,5’-dioctanoyl-5-fluoro-2’-deoxyuridine and incorporation into solid lipid nanoparticles,” Eur. J. Pharm. Biopharm., 54, 285–290, 2002.
32.Bargoni, A., Cavalli, R., Caputo, O., Fundaro, A., Gasco, M. R., Zara, G. P., “Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats,” Pharm. Res., 15, 745–750, 1998.
33.Abbott, N. J., Romero, L. A., “Transporting therapeutics across the blood-brain barrier,” Mol. Med. Today, 2, 106–113, 1996.
34.Fundrao, A., Cavalli, R., Bargoni, A., Vighetto, D., Zara, G., Gasco, M. R., “Non-stealth and solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i. v. administration to rats,” Pharm. Res., 42, 337–343, 2000.
35.Yang, S. C., Lu, L. F., Cai, Y., Zhu, J. B., Liang, B. W., Yang, C. Z., “Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect of brain,” J. Control. Rel., 59, 299–307, 1999.
36.Sukriti, N., “Blood-brain barrier: biology and research protocols,” Humana Press, New York, pp. 145–160, 2003.
37.Hardebo, J. E., Kahrstrom, J., “Endothelial negative surface charge areas and blood-brain barrier function,” Acta. Physiol. Scand., 125, 495–499, 1985.
38.Fenart, L., Casanova, A., Dehock, B., Duhem, C., Slupek, S., Cecchelli, R., Betbeder, D., “Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood brain barrier,” Parmacol. Exp. Ther., 291, 1017–1022, 1999.
39.Lockmam, R. P., Koziara, M. J., Mumper, R. J., Allen, D. D., “Nanoparticle surface charges alter blood brain barrier integrity and permeability,” J. Drug Target, 12, 635–641, 2004.
40.Asperen, J. V., Mayer, U., Tellingen, O. V., Beijnen, J. H., “The functional role of P-glycoprotein in the blood-brain barrier,” J. Pharm. Sci., 86, 881–884, 1997.
41.Thorgeirsson, S. S., Silverman, J. A., Grant, T. W., Marino, P. A., “Multidrug resistance gene family and chemical carcinogens,” J. Clin. Pharm. Ther., 49, 283–292, 1991.
42.Persidis, A., “Cancer multidrug resistance,” Nat. Biotechnol., 18, 18–20, 2000.
43.Hsiang, Y. H., Hertzberg, R., Hecht, S., Liu, L. F., “Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I,” Biol. Chem., 260, 14873–14878, 1985.
44.Oscar, K. J., Hawkins, T. D., “Microwave alteration of the blood-brain barrier system of rats,” Brain Res., 126, 281–293, 1977.
45.Williams, W. M., Lu, S. T., Cerro, M. D., Hoss, W., Michaelson, S. M., “Effect of 2450-MHz microwave energy on the blood-brain barrier: an overview and critique of past and present research,” Microwave Theory and Techniques, 8, 808–818, 1984.
46.Schirmacher, A., Winters, S., Fischer, S., Goeke, J., Galla, H. J., Kullnick, U., Ringelstein, E. B., Stogbauer, F., “Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the blood-brain barrier in vitro,” Bioelectromagnetics, 21, 338–345, 2000.
47.Albert, E. N., Kerns, J. M., “Reversible microwave effects on the blood-brain barrier,” Brain Res., 230, 153–164, 1981.
48.Williams, W. M., Hoss, W., Formaniak, M., Michaelson, S. M., “Effect of 2450-MHz microwave energy on the blood-brain barrier to hydrophilic molecules: effect on the permeability to HRP (horseradish peroxidase),” Brain Res. Rev., 7, 171–181, 1984.
49.Kreuter, J., Alyautdin, R. N., Kharkevich, D. A., Tezikov E. B., Ramge, P., Begley, D. J., “Significant entry of tubocurarine into brain of rats by adsorption to polysorbate 80-coated polybutyl-cyanoacrylate nanoparticles: an in situ brain perfusion study,” J. Microencapsul., 15, 67–74, 1998.
50.Zara, G. P., Cavalli, R., Fundaro, A., Bargoni, A., Caputo, O., Gasco, M. R., “Pharmacokinetics of doxorubicin incorporated in sold lipid nanospheres (SLN),” Pharm. Res., 40, 281–286, 1999.
51.Schroeder, U., Sabel, B. A., Schroeder, H., “Diffusion enhancement of drugs by loaded nanoparticles in vitro,” Neuro-Psychopharmacol. Biol. Psychiat., 23, 941–949, 1999.
52.Roberta, C., Otto, C., Maria, E. C., Michele, T., Carmela, S., Maria, R. G., “Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles,” Int J Pharm., 148, 47–54, 1997.
53.Glynn, S. L., “In vitro blood-brain barrier premeabily of nevirapine compared to other HIV antiretroviral agents,” J. Pharm. Sci., 87, 306–310, 1998.
54.Kuo, Y. C., “Loading efficiency of stavudine on polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate copolymer nanoparticles,” Int. J. Pharm., 290, 161–172, 2005.
55.Davda, J., Labhasetwar, V., “Characterization of nanoparticle uptake by endothelial cells,” Int. J. Pharm., 233, 51–59, 2002.
56.Panyam, J., Sahoo, S. K., Prabha, S., Bargar, T., Labhasetwar, V., “Fluorescence and electron microscopy probes for cellular and tissue uptake of poly (D,L-lactide-co-glycolide) nanoparticles,” Int. J. Pharm., 262, 1–11, 2003.
57.Berridge, M. V., Tan, A. S. “Characterization of the cellular reduction MTT: subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction,” Arch. Biochem. Biophys., 303, 474–482, 1993.
58.Pieter, G. J., Albertus, G. B., “Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug,” Eur. J. Pharm. Sci., 12, 95–102, 2000.
59.Liend, R., Padilla, F. C., Quintana, A., “Characterization of cocoa butter extracted from Criollo cultivars of Theobroma cacao L.,” Food Res. Int., 30, 727–731, 1997.
60.David, Q. G., David, T. E., Adriana, G. Q., Eric, A., Eric, D., “Adaptation and optimization of the emulsification-diffusion technique to prepare lipidic nanospheres,” Eur. J. Pharm. Sci., 26, 211–218, 2005.
61.蘇福隆, “以PBCA、MMASPM和SLN為Stavudine、Delavirdine及Squinavir載體之生體外血腦阻障穿透,” 中正化工所論文, 2005.
62.Ari, M., Piia, P., Jonne, N., Jukka, P., Ari, P. S., Jukka, J., “Apoptosis induced by ultraviolet radiation is enhenced by amplitude modulated rediofrequency radiation in mutant yeast cells,” Bioelectromagnetics, 25, 127–133, 2004.
63.Tröster, S. D., Kreuter, J., “Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles,” J. Microencapsul., 9, 19–28, 1992.
64.Alyaudtin, R., Reichel, A., Löbenberg, R., Ramge, P., Kreuter, J., Begley, D., “Interaction of poly (butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro,” J. Drug Target, 9, 209–221, 2001.
65.Dehouck, B., Fenart, L., Dehouck, M. P., Pierce, A., Torpier, G., Cecchelli, R., “A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier,” J. Cell Biol., 138, 877–889, 1997.
66.Glynn, S. L., “In vitro blood-brain barrier premeabily of nevirapine compared to other HIV antiretroviral agents,” J. Pharm. Sci., 87, 306–310, 1998.
67.Krogh A. “The active and passive exchanges of inorganic ions though the surfaces of living cells and though living membranes generally,” Proc. Roy. Soc. Loud. B 133, 140–200, 1946.
68.Gabriel, S., Lau, R. W., Gabriel, C., “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phy. Med. Boil., 41, 2251–2269, 1996.
69.Leif, G. S., Arne, B., Kerstin, S., Jacob, L. E., Bertil R. R., “Permeability of blood-brain barrier induces by 915 MHz electromagnetic radiation, continuous wave and modulation at 8, 16, 50, and 200 Hz,” Microsc. Res. Tech. 27, 535–542, 1994.
70.Abair, E. N., Slaby, F., Roche, J., Loftus, J., “Effect of amplitude modulated 147 MHz radiofreqency radiation on calcium ion efflux from avian brain tissue,” Radiat. Res., 109, 19–27, 1987.
71.Blackman, C. F., Elder, J. A., Weil, C. M., Benane, S. G., Eichinger, D. C., House, D. E., “Induction of calcium-ion efflux from brain tissue by radio-frequency radiation: effects of modulation frequency and field strength,” Radio Sci., 14, 93–98, 1979.
72.Akhteruzzaman, M., Hongmei, M., Sudthida, V., Lixin, H., C. Thomas, L., Ann, H., Dale, J. K., “In Vitro antiviral interaction of lopinavir with other protease inhibitors,” Antimicrob. Agents Chemother, 46, 2249–2253, 2002.
73.Bonincontro, A., Mariutti, G., “Influence of hypertheria, pH and culturing conditions on the eletrical parameters of Chinese hamster V79 cells,” Phy. Med. Biol., 33, 557–568, 1988.
74.Huang, F., Subbaiah, P. V., Holian, O., Zhang, J., Johnson, A., Gertzberg, N., Lum, H., “Lysophosphatidylcholine increases endothelial permeability: role of PKCa and RhoA cross talk,” Am J Physiol Lung Cell Mol Physiol, 289, 176–185, 2005.
75.Marinelli, F., La Sala, D., Cicciotti, G., Cattini, L., Trimarchi, C., Putti, S., Zamparelli, A., Giuliani, L. Tomassetti, G., Cinti, C., “Exposure to 900 MHz Electromagnetic Field Inducesan Unbalance Between Pro-Apoptotic and Pro-SurvivalSignals in T-Lymphoblastoid Leukemia CCRF-CEM Cells,” J. Cell Physiol., 198, 324–332, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top