(3.235.41.241) 您好!臺灣時間:2021/04/15 05:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭建生
研究生(外文):Chien-Sheng Kuo
論文名稱:利用化學氣相沉積法合成二氧化鈦奈米材料與其應用
論文名稱(外文):Synthesis of Titania-Based Photocatalyst by Chemical Vapor Deposition and Its Applications
指導教授:李元堯李元堯引用關係
指導教授(外文):Yuan-Yao Li
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:163
中文關鍵詞:奈米碳管二氧化鈦化學氣相沉積
外文關鍵詞:chemucal vapor depositiontitanium dioxidecarbon nanotube
相關次數:
  • 被引用被引用:1
  • 點閱點閱:533
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:127
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的為利用化學氣相沉積法進行合成具可見光應答之二氧化鈦(TiO2)粉體、二氧化鈦薄膜、奈米碳管(CNT)與二氧化鈦的複合材料以及具超親水性之二氧化鈦薄膜,並進一步對於所開發出的新穎二氧化鈦光觸媒材料的進行效能檢測與其應用測試。在光催化活性的測試方面,在此選用日本制定的標準測試法JIS R 1701-1進行氧化氮氧化物的光催化活性測試;二氧化鈦薄膜選用接觸角測定儀進行其超親水性測試。在二氧化鈦結構特性元素分析鑑定方面,以X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、X光電子光譜儀(XPS)、紫外光-可見光吸收光譜儀(UV-Vis)進行分析。
可見光應答二氧化鈦粉體的製備方面,使用化學氣相沉積法在製備的過程中經由控制反應腔體內的氣氛,以及反應溫度合成出含碳的二氧化鈦粉體;此外並入加氨氣進行裂解合成出氮、碳共摻雜的二氧化鈦粉體。合成之二氧化鈦粉體經由X光繞射分析判定為銳鈦礦結晶相之二氧化鈦粉體,經由電子顯微鏡的觀察後可以證明以化學氣相沉積法所製備出的粉體具有良好的分散性且粒徑均一。在光催化活性測試方面,所合成出的粉體在可見光的激發下所能表現出極佳的氮氧化物去除能力。
CNT/TiO2新型導電型二氧化鈦材料,此材料合成方法分成兩個步驟,首先使用光沉積法將粒徑約為2-4nm的奈米鎳還原沉積在二氧化鈦粉體表面,繼而使用化學氣相沉積法以二氧化鈦表面的金屬鎳當作生長觸媒,在二氧化鈦表面成長出奈米碳管。所合成出的CNT/TiO2新型觸媒經由四點探針測試後能證明經改質後的二氧化鈦粉體具備有良好的導電性,CNT/TiO2材料經由外加電場給予與電壓在無任何光源的環境下也能具有反應活性。
超親水性二氧化鈦薄膜方面,使用化學氣相沉積法經由控制氧氣的流量可控制二氧化鈦薄膜結構,且所製備出的薄膜具有良好初濕特性,照射紫外光之後也能夠快速的達到超親水性的效果,由SEM,AFM及接觸角測試後,可證明二氧化鈦薄膜表面的粗糙度對於初始接觸角有極大的影響。在此研究裡,提高氧氣流量可以增加薄膜表面的粗糙度,也能使二氧化鈦薄膜能夠更快的達到超親水性。
Titanium dioxide (TiO2) is the representative photocatalyst material due to its strong redox ability and wide applications. However, conventional TiO2 photocatlyst was normally activated by the light source which the wavelength is less than 388 nm. Therefore, the applications of TiO2 were restricted. In this thesis, we prepared high effective TiO2 photocatalyst materials study the structure of the materials and explore their applications. Fundamentals of titanium dioxide photocayalysis were reviewed in chapter 1. Visible-light response TiO2 photocatalyst, a new electric conductive CNT/TiO2 and superholicity TiO2 film were systematically studied and report in chapters 2-5, respectively.
In the first part, the ultraviolet and visible-light-responsive titania was synthesized and employed in the photomineralization of NOx. A thermal decomposition reaction of titanium isopropoxide was carried out in metal-organic chemical vapor deposition (MOCVD) process for continuous production of nano-TiO2 particles. The carbon-containing titanium dioxide with anatase phase prepared at 500 oC exhibited a high photocatalytic activity for the oxidation of NO under visible-light illumination. The experimental results showed that up to 48 % removal of NOx can be obtained in a continuous flow type reaction system under visible-light illumination (green LED). The chamber temperature in this MOCVD process plays an important role on the lattice structure and carbon content of TiO2.
In the second part, nitrogen-doped titania (N-doped TiO2) and nitrogen-carbon co-doped titania (N,C-doped TiO2) were prepared in metal-organic chemical vapor deposition (MOCVD) processes under the controlled reaction atmosphere. The N-doped TiO2 and N,C-doped TiO2 with anatase phase were prepared at 600 oC under N2-O2-NH3 and N2-NH3 atmospheres respectively. The N,C-doped TiO2 exhibited a high photocatalytic activity for the oxidation of NO under visible-light illumination. The result found that the chamber atmosphere in MOCVD process played an important role on the lattice structure and nitrogen and carbon content of TiO2.
In the third part, a nano-material, carbon nanotube (CNT)-grafted TiO2 (CNT/TiO2), was synthesized as an electrically conductive catalyst, which possessed the redox ability under electrical excitation instead of UV irradiation. The CNT/TiO2 material was synthesized by a two-step process. Ni nanoparticles were photodeposited onto TiO2. The Ni nanoparticles then served seeds for the growth of CNTs using the chemical vapor deposition (CVD) of C2H2. The CNT/TiO2 nano-composite exhibited a strong oxidation activity toward NO gas molecules via both photocatalysis under UV irradiation and electrocatalysis under a DC voltage of 500 volts in dark condition.
In the fourth part, a super-hydrophilic titanium dioxide film was prepared by chemical vapor deposition method. The thickness and roughness of TiO2 film was increased with the increase of oxygen fraction in the inlet flow. A rough surface of TiO2 film exhibited a better original wettability than smooth one. The rate of photo-induced super-hydrophilicity of TiO2 film was increased by increasing the roughness and thickness under the irradiation of ultraviolet light. The reasons for the original wettability and photo-induced super-hydrophilicity were explained with Wenzel’s law and the degree of crystallization.
Contents
ABSTRACT I
中文摘要 IV
CONTENTS VI
LIST OF FIGURES VIII
LIST OF TABLES XI
CHAPTER 1 1
TITANIUM DIOXIDE PHOTOCATALYSIS 1
1.1 INTRODUCTION 1
1.2 TITANIUM DIOXIDE 4
1.2.1 General remarks 4
1.2.4 Photocatalytic decomposed organic and inorganic contaminant 14
1.2.5 Photo-induced superhydrophilicity 15
1.3 TIO2 NANOMATERIAL SYNTHESIS METHOD 20
1.3.1 Liquid phase method. 20
1.3.2 Gas phase method 25
1.4 PHOTOCATALYTIC APPLICATIONS 33
1.4.1 Air cleaning 34
1.4.2 Water purification 35
1.4.3 Photocatalytic cancer treatment 36
1.4.4 Self-cleaning and anti-fogging function 37
1.5 OBJECTIVES AND OUTLINES 39
CHAPTER 2 43
SYNTHESIS OF CARBON-CONTAINING NANO-TITANIA AND ITS VISIBLE-LIGHT RESPONSIVE PHOTOCATALYTIC ACTIVITY 43
2.1 INTRODUCTION 43
2.1.1 Transition metal doping 45
2.1.2 Carbon doping 47
2.2 EXPERIMENTAL 51
2.2.1 Apparatus, experimental conditions and characterization 51
2.2.2 Degradation of NOx over TiO2 photocatalyst 53
2.3. RESULTS AND DISCUSSION 55
2.3.1 Activity of photocatalysts under UV and visible-light irradiation 55
2.3.2 Characterization of the TiO2 photocatalyst. 60
2.4. CONCLUSIONS 75
CHAPTER 3 76
SYNTHESIS OF C,N DOPED VISIBLE-LIGHT-RESPONSIVE TITANIA AND ITS ACTIVITY FOR OXIDATION OF NITROGEN OXIDES 76
3.1 INTRODUCTION 76
2.2 EXPERIMENTAL 80
3.3 RESULTS AND DISCUSSION 85
3.3.1 Activity of photocatalysts under UV and visible-light irradiation 85
2.3.2 Characterization of the TiO2 photocatalyst 87
3.4 CONCLUSIONS 96
CHAPTER 4 97
SYNTHESIS OF CNT-GRAFTED TIO2 NANOCATALYST AND ITS ACTIVITY TRIGGERED BY A DC VOLTAGE 97
4.1 INTRODUCTION 97
4.1.1 Titanium dioxide 97
4.1.2 Carbon nanotube 98
4.1.3 TiO2/CNT composite material 99
4.2 EXPERIMENTAL 103
4.2.1 Preparation of Ni/TiO2 103
4.2.2 Preparation of CNT/TiO2 104
4.2.3 Oxidation of NO 106
4.3 RESULTS AND DISCUSSION 106
4.3.1 Characterization of Ni/TiO2 and CNT/TiO2 106
4.3.2 Photoactivity of CNT/TiO2 under UV irradiation 115
4.3.4 Activity of CNT/TiO2 catalyst by a DC voltage 115
4.4 CONCLUSION 121
CHAPTER 5 122
WETTABILITY AND SUPER-HYDROPHILIC TIO2 FILM FORMED BY CHEMICAL VAPOR DEPOSITION 122
5.1 INTRODUCTION 122
5.1.1 Contact angle measurement 126
5.3 RESULTS AND DISCUSSION 130
5.4 CONCLUSIONS 143
CHAPTER 6 144
CONCLUSIONS & FUTURE RESEARCH 144

List of Figures
Figure 1. 1 Schematic diagram of an electrochemical photocell. 2
Figure 1.2. 1 Bulk crystal structure of (a) anatase (b) rutile. 7
Figure 1.2. 2 Schematic diagram of energy for TiO2 9
Figure 1.2. 3 Reaction mechanism of TiO2 photocatalyst. 11
Figure 1.2. 4 Main processes occurring on a semiconductor particle. 11
Figure 1.2. 5 Energy structures of various photosemiconductors. 13
Figure 1.2. 6 Decomposition mechanism of organic compound. 14
Figure 1.2. 7 Mechanism of decompose NO gas. 15
Figure 1.2. 8 The mechanism of superhydrphilicity. 16
Figure 1.2. 9 Change in CA of TiO2 surface (a) under UV irradiation (b) in dark. 17
Figure 1.2. 10 FFM images of rutile TiO2(100) single crystal surface before and after UV light irradiation. 18
Figure 1.2. 11 Relationship between changes in water contact angle and hardness at the surface of TiO2 film. 19

Figure 1.3. 1 Reaction process of microemulsion method. 24
Figure 1.3. 2 Main steps occurring in the CVD process. 27
Figure 1.3. 3 Principle of PVD. 30
Figure 1.3. 4 Diagram of PVD apparatus 31
Figure 1.3. 5 schematic diagram of SPD apparatus. 32

Figure 1.4. 1 Photocatalytic water recycling system. 35
Figure 1.4. 2 Animal test of photocatalytic cancer therapy; photograph of nude mouse just(A)after initial treatment and (B)4 weeks after treatment). 36
Figure 1.4. 3 Field test of stain-resistant tiles in polluted urban air (A) TiO2 coated tile (B) normal tile. 38
Figure 1.4. 4 Anti-fogging effect of (a) automobile side-view mirror (b) bathroom mirror. 39

Figure 2. 1 Solar light distribution 44
Figure 2. 2 Particle geometry for various models for the doping of carbon into TiO2. 49
Figure 2. 3 Schematic diagram of the reactor for the synthesis of TiO2. 52
Figure 2. 4 Schematic diagram of continuous flow system for photocatalytic removal of NOx 54
Figure 2. 5 Photon energy distribution profiles of UVA lamp and LEDs. 55
Figure 2. 6 Reaction profiles of NO over the TiO2_500 photocatalyst during 90 minute on stream; catalyst loading: 0.2 g, intensity of irradiation: 1 mW/cm2, inlet concentration of NO: 1 ppm, inlet flow rate: 1 L/min, reaction temperature: 27 oC. 57
Figure 2. 7 The average removal rate of NOx (μmol/h) on various photocatalyst versus wavelength of irradiation; catalyst loading: 0.2g, irradiation intensity: 1mW/cm2, inlet concentration of NO: 1ppm, inlet flow rate: 1 L/min, reaction temperature: 27 oC 60
Figure 2. 8 XRD patterns of prepared photocatalysts. 62
Figure 2. 9 Raman spectra of prepared photocatalysts. 64
Figure 2. 10 TEM photograph of (a) TiO2_500 and (b) TiO2_1000. 66
Figure 2. 11 C 1s XPS spectra of prepared photocatalysts. 72
Figure 2. 12 UV-Visible absorption spectra of various photocatalysts. 74

Figure 3. 1 Comparison of the calculated electronic structures for N-doped anatase and rutile TiO2. 79
Figure 3. 2 Schematic of continuous flow system for photocalaytic degradation of NOx. 82
Figure 3. 3 Photon energy distribution profiles of UV and visible lights. 84
Figure 3. 4 Dependence of NOx-removal percentage of prpeared photocatalysts on illumination wavelength; catalyst loading: 0.2 g, intensity of irradiation: 1 mW/cm2, inlet concentration of NO: 1 ppm, inlet flow rate: 1 L/min, reaction temperature: 27 oC, operation time, 0.5 h. 87
Figure 3. 5 XRD patterns of prepared photocatalysts. 89
Figure 3. 6 (a) N 1s and (b) C 1s XPS spectra of prepared photocatalysts. 92
Figure 3. 7 (a) UV-Visible diffuse reflectance spectra of prepare photocatalysts. (b) transformed diffuse reflectance spectra. 95

Figure 4. 1 Molecular representations of SMCNT and MWCNT with transmission electron micrographs below [157]. 99
Figure 4. 2 Proposed process of H2 evolution on MWNT–TiO2:Ni composite catalyst under visible light irradiation [161]. 101
Figure 4. 3 Scheme of preparation of Ni/TiO2 and CNT/TiO2 105
Figure 4. 4 (a) FE-SEM and (b) HR-TEM images of Ni/TiO2 particle. 108
Figure 4. 5 Ni 2P3/2 XPS spectra of prepared Ni/TiO2. 109
Figure 4. 6 (a) and (b) FE-SEM and (c) HR-TEM images of CNT/TiO2 particle. 112
Figure 4. 7 HR-TEM image of CNT tip 113
Figure 4. 8 Raman spectrum of CNT/TiO2 114
Figure 4. 9 Concentration profiles of NO oxidation over CNT/TiO2 under UV light irradiation Experimental conditions: catalyst loading = 0.2 g, UV intensity = 1 mW/cm2, inlet NO concentration = 1ppm, inlet flow rate= 1 L/min, reaction temperature = 23 oC. 118
Figure 4. 10 Concentration profiles of NO oxidation over CNT/TiO2 under darkness Experimental conditions: catalyst loading = 0.2g, applying voltage= DC 500V, inlet NO concentration = 1 ppm, inlet flow rate = 1 L/min, reaction temperature = 27 oC. 119

Figure 5. 1 Infinitesimal displacement of a liquid wedge on a rough surface.[178] 124
Figure 5. 2 Diagram of the vector forces present at the solid-liquid interface. The measured contact angle (θ) is shown. 127
Figure 5. 3 Schematic diagram of CVD system 128
Figure 5. 4 XRD patterns of prepared TiO2 film 131
Figure 5. 5 Surface morphology of prepared TiO2 films prepared at different oxygen flow rate in the CVD process 134
Figure 5. 6 AFM images of TiO2 film that prepared under oxygen flow rate at (a) 0 (b) 500 (c) 900 sccm. 137
Figure 5. 7 Cross-sectional FE-SEM morphology of prepared TiO2 film at the oxygen flow rate of (a) 0 sccm (b) 900 sccm 139
Figure 5. 8 Effect of UV light irradiation on the water contact angle on TiO2 films. 141
Figure 5. 9 A plot of the hydrophilicity of TiO2 film with time in the dark. 142



















List of Tables
Table 1. 1 Properties of anatase and rutile TiO2. 8
Table 1. 2 Applications of photocatalysis 33

Table 2. 1 Characterization of prepared TiO2 68

Table 4. 1 Comparison of NO degradation in the presence of four nanoparticles; catalyst loading = 0.2g, DC voltage = 500V, inlet NO concentration = 1 ppm, inlet flow rate = 1 L/min, reaction temperature = 27 oC. 120
References
1.Fujishima A., Honda K., Nature 1972, 238, 37.
2.Frank S. N., Bard A. J., J. Phys. Chem. 1977, 81, 1484.
3.Frank S.N., Bard A. J., J. Am. Chem. Soc. 1977, 99, 303.
4.Schrauzer G. N., Guth T. D., J. Am. Chem. Soc. 1977, 99, 7189.
5.Kreutler B, Bard A. J., J. Am. Chem. Soc. 1978, 100, 4317.
6.Pruden A. L., Ollis D. F., J. Catal. 1983, 82, 404.
7.Hsiav C. Y., Lee C. L., Ollis D. F., J. Catal. 1983, 82, 418.
8.Matsunaga T, Tomato R, Nakajima T, Wake H., FEMS Microbiol Lett 1985, 29, 211.
9.Fujishima A., Ohtsuki J., Yamashita T., Hayakawa S., Photomed. Photobiol. 1986, 8, 45.
10.O’Regan B., Gra¨tzel M., Nature, 1991, 353, 737.
11.Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Nature, 1997, 388, 431.
12.Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki & Y. Taga, 2001. Science 293, 269.
13.Greenwood N. N., Earnshaw A., Chemistry of the elements. Oxford: Butterworth-Heinemann; 1997.
14.Thompson R., Industrial inorganic chemicals; production and uses. The Royal Society of Chemistry; 1995.
15.Griebler W. D., Hocken J., Schulte K., ECJ 1998;1–2:H.
16.Macleod H. A., Thin film optical filters. 2nd ed. New York: MacMillan; 1986, 370.
17.Moseley P. T., Tofield B. C., Solid state gas sensors. Bristol: Adam Hilger, 1987.
18.Sberveglieri G., editor. Gas sensors. Dordrecht: Kluwer Academic Publishing House, 1992.
19.Kumazawa N., Islam M. R., Takeuchi M., J. Electrochem. Chem. 1999, 472, 137.
20.Logothetis E. M., Ceram. Proc. Eng. Sci. 1980, 1, 281.
21.Savage N.O., Akbar S. A., Dutta P. K.. Sensors Actuators B 2001, 72, 239.
22.Dutta P. K., Ginwalla A., Hogg B. D., Patton B. R., Chwieroth B., Liang Z., J. Phys. Chem. B 1999, 103, 4412.
23.Birkefeld L. D., Azad A. M., Akbar S., J. Am. Ceram. Soc. 1992, 75, 2964.
24.Disegi J. A., Wyss H., Orthopedics 1989, 12, 75.
25.Klinger M. M., Rahemtulla F. R., Prince C. W., Lucas L. C., Lemons J. E., Crit. Rev. Ora.l Biol. Med. 1998, 9, 449.
26.Kasimo B., Laaumaa J., CRC Crit. Rev. Biocompat. 1986, 2, 335.
27.Leng Y. X., Huang N., Yang P., Chen J. Y., Sun H., Wang J., Surf. Coat. Technol. 2002, 156, 295.
28.Mac Donald D. E., Deo N., Markovic B., Stranick M., Somasundaran P., Biomaterials 2002, 23, 1269.
29.Hadjiivanov K. J., Kissurski D. G., Chem. Soc. Rev. 1996, 25, 61.
30.Armor J. N., Appl Catal B: Environ 1992, 1, 221.
31.Went M. S., Reimer J. A., J. Am. Chem. Soc. 1992, 114, 5768.
32.Went G. T., Leu L. J., Lombardo S. J., Bell A. T., J. Phys. Chem. 1992, 96, 2235.
33.Sun Y., Egawa T., Zhang L., Yao X., Jpn. J. Appl. Phys. 2002 41, 945.
34.Weirich T. E., Winterer Seifried M., S., Hahan H., Fuess H., Ultramicroscopy, 2000, 81, 263.
35.Fujishima A., Hashimoto K., Watanabe T., 1st edition, BKC, Tokyo, 1999.
36.Bard J. Science 1980, 201, 139.
37.Mills A., Le Hunte S., J. Photochem. Photobiol. A: Chem 1997, 108, 1.
38.Hagfeld, A. Gratzel, M. Chem. Rev., 1995, 95, 49.
39.Linsbigler A. L., Lu G. Q., Yates Jr. JT. Chem Rev 1995, 95, 735.
40.Tanaka K., Capule M. F. V., Hisanaga T., Chem. Phys. Lett. 1991, 187, 73.
41.Maruska H. P., Ghosh A. K., Solar Energy 1978, 20, 443.
42.Gerischer H., Heller A., J. Electrochem. Soc. 1992, 139, 113.
43.Bickley R. I., Gonzales-Carreno T., Lees J. L., Palmisano L., Tilley R. J. D., J. Solid. State. Chem. 1991, 92, 178.
44.Basca R. R., Kiwi J., Appl. Catal. B: Environ 1998, 16, 19.
45.Muggli D. S., Ding L., Appl. Catal. B: Environ 2001, 32, 181.
46.Ohno T., Sarukawa K., Tokieda K., Matsumura M., J. Catal. 2001, 203, 82.
47.Elsom D., Atmospheric pollution. New York: Basil Blackwell; 1987.
48.Seinfeld J. H., Pandis S. N., Atmospheric chemistry and physics: from air pollution to climate change. New York: Wiley; 1988.
49.Cooper C. D., Alley F. C., Air pollution control: a design approach. Prospect Heights (IL): Waveland Press; 1994.
50.Crap O., Huisman C. L., Reller A., Prog. Solid State Chem. 2004, 32, 33.
51.Devahasdin S., Fan C., Li K., Chen D.H., J Photochem Photobiol A: Chem 2003, 156, 161.
52.Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Adv. Mater. 1998, 10, 135.
53.Hashimoto K., Irie H., Fujishima A., Jpn. J. Appl. Phys. 2005, 44, 8269
54.Iwasaki M., Hara M., Ito S., J. Mater. Sci. Lett. 1988, 17, 1769.
55.Bach U., Lupo D., Comte P., Moster J. E., Weissortel F., Salbeck J., Nature 1998, 395, 583.
56.Watson S. S., Beydoun D., Scott J. A., Amal R., Chem. Eng. J. 2003, 95, 213.
57.Okudera H., Yokogawa Y., Thin Solid Films 2003, 423, 119.
58.Tonejc M., Djerdj I., Tonejc A., Mater. Sci. Eng. B 2001, 85, 55.
59.Phani R., Santucci S., Mater. Lett. 2001, 50, 240.
60.Yang P., Lu C., Hua N., Du Y., Mater. Lett. 2002, 57, 794.
61.Livage J., Henry M., Sanchez C., Prog. Solid. State. Chem. 1988, 18, 259.
62.Hague D. C., Mayo M. J., J. Am. Ceram. Soc. 1994, 77, 1957.
63.Poznyak S. K., Kokorin A. I., Kulak A. I., J. Electroanal. Chem. 1998, 442, 99.
64.Pedraza F., Vasquez A., J .Phys. Chem. Solids 1999, 60, 445.
65.CarpO, Reller A. Unpublished results.
66.Xie Y., Yuan C., Mater. Res. Bull 2004, 39, 533.
67.Yin S., Fujishiro Y., Wu J., Aki M., Sato T.. J. Mater. Proc. Tech. 2003, 137, 45.
68.Kang M., J. Mol. Catal A: Chem. 2003, 97, 173.
69.Kim C. S., Moon B. K., Park J. H., Son S. M., J. Cryst. Growth 2003, 254, 405.
70.Kolen’ko Y. V., Burukhin A. A., Churagulov B. R., Oleynikov N. N., Mater. Lett. 2003, 57, 1124.
71.Aruna S. T., Tirosh S., Zaban A., J. Mater. Chem. 2000, 10, 2388.
72.Zhang R., Gao L., Mater. Res. Bull 2002, 37, 1659.
73.Pillai V., Kumar P., Huo M. J., Ayyub P., Shah D. O., Adv. Colloid. Interface. Sci. 1995, 55, 241.
74.Chhabra V., Pillai V., Mishra B. K., Morrone A., Shah D. O., Langmuir 1995, 11, 3307.
75.Nagaveni N., Hegde M. S., Ravishankar N., Subbanna G. N., Madras G., Langmuir 2004, 20, 2900.
76.Kavan L., O’Regan B., Kay A., Gra¨tzel M., J. Electroanal. Chem. 1993, 346, 291.
77.Natarajan C., Nogami G., J. Electrochem. Soc. 1996, 143, 1547.
78.Matsumoto Y., Ishikawa Y., Nishida M., Ii S., J. Phys. Chem. B 2000, 104, 4204.
79.Zhitomirsky I., Mater. Lett. 1998, 33, 305.
80.Nalwa H. S., Academic. Press., 2000.
81.Choy K. L., Prog. Mater. Sci. 2003, 48, 57.
82.Van de Krol R., Goossens A., Schoonman J., J. Electrochem. Soc. 1997, 144, 1723.
83.Ogihara T., Ookura T., Yanagawa T., Ogata N., Yoshida K., J. Mater. Chem. 1991, 1, 789.
84.Fujishima A., Tata N., Rao Donald A. Tryk, J. Photochem & Photobio C: Photochem reviews. 2000, 1, 1
85.Obee T. N., Brown R. T., Environ. Sci. Technol. 1995, 29, 1223.
86.Ibusuki T., Takeuchi K., J. Mol. Catal. 1994, 88, 93.
87.Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W., Chem. Rev. 1995, 95, 69.
88.Mills A., Hunte S. L., J. Photochem. Photobiol. A. 1997, 108, 1.
89.Choi W, Termin A, Hoffmann M. R., J. Phys. Chem. 1994, 98. 13669.
90.Palmisano L., Schiavello M., Sclafani A., Martin C., Martin I., Rives V., Catal. Lett. 1994, 24, 303.
91.Ohno T., Akiyoshi M., Umebayashi T., Asai K., Mitsui T., Matsumura M., Appl. Catal. A: General. 2004, 265, 115.
92.Mardare D., Rusu G. I., Mater. Lett. 2002, 56, 210.
93.Nakamura I., Negishi N., Kutsuna S., Ihara T., Sugihara S., Takeuchi K., J. Mol. Catal. A. 2000, 161, 205.
94.Yamashita H., Harada M., Misaka J., Takeuchi M., Ikeue K., Anpo M., J. Photochem. Photobiol. A. 2002, 148, 257,.
95.Anpo M., Takeuchi M., Ikeue K., Dohshi S., Curr. Opin. Solid St. M. 2002, 6 381-388.
96.Dvoranova D., Brezova V., Mazur M., Malati M. A., Appl. Catal. B-Environ. 2002, 37, 91.
97.Martin S. T., Morrison C. L., Hoffmann M. R., J. Phys. Chem. 1994, 98, 13695.
98.Li X. Y., Yue P. L., Kutal C., New J. Chem. 2003, 27, 1264.
99.Zhao X. F., Meng X. F., Zhang Z. H., Liu L., Jia D. Z., J. Inorg. Mater. 2004, 19, 140.
100.Wu S. X., Ma Z., Qin Y. N., He F., Jia L. S., Zhang. Y. J., Acta Phys. -Chim. Sin. 2003, 19, 967.
101.Karvinen S., Hirva, P., Pakkanen T. A., J. Mol. Struct.-Theochem 2003, 626, 271.
102.Choi W. Y., Termin A., Hoffmann M. R., Angew. Chem., Int. Ed. 1994, 33, 1091.
103.Choi W. Y., Termin A., Hoffmann M. R., J. Phys. Chem. 1994, 98, 13669.
104.Lu G. Q., Linsebigler A., Yates J. T. Jr., J. Chem. Phys. 1995, 102, 3005.
105.Perkins C. L., Henderson M. A., J. Phys. Chem. B 2001, 105, 3856.
106.Thompson T. L., Yates J. T., Jr. J. Phys. Chem. B 2006, 110, 7431.
107.Khan S. U. M., Al-Shahry M., Ingler W. B., Science 2002, 297, 2243.
108.Nakano, Y.; Morikawa, T.; Ohwaki, T.; Taga, Y. Appl. Phys. Lett. 2005, 87, 052111.
109.Lee J. Y., Park J., Cho J. H., Appl. Phys. Lett. 2005, 87, 11904.
110.Tachikawa T., Tojo S., Kawai K., Endo M., Fujitsuka M., Ohno T., Nishijima K., Miyamoto Z., Majima T., J. Phys. Chem. B 2004, 108, 19299.
111.Tracy L. Thompson, John T. Yates, Jr., Chem. Rev. 2006, 106, 4428
112.Sun Y., Egawa T., Zhang L., Yao X., Jpn. J. Appl. Phys. 2002, 41, 1389.
113.Kuo C. S., Tseng Y. H., Li Y. Y., Chem. Lett. 2006, 35, 356.
114.Lin Y. M., Tseng Y. H., Huang J. H., Chao C. C., Chen C. C., Wang I., Environ. Sci. Technol. 2006, 40, 1616.
115.Tseng Y. H., Kuo C. S., Huang C. H., Li Y. Y., Chou P. W., Cheng C. L., Wong M. S., Nanotechnology 2006, 17, 2490.
116.Negish N., Takeuchi K., Ibusuki T., J. Mater. Sci. 1998, 33, 5789.
117.Matsuda S., Hatano H., Tsutsumi A., Chem. Eng. J. 2001, 82, 183.
118.Walker A., Formenti M., Meriaudeau P., Teichner S. J. J. Catal. 1977, 50 237.
119.Behnke W. F., Nolting F., Zetzsch C., 1987 J. Aerosol Sci. 18 65-71.
120.Ibusuki T., Takeuchi K., Atmos. Environ. 1986, 20, 1711.
121.Atkinson R., D. Baulch L., Cox R. A., Hampson R. F., Jr., Kerr J. A., Troe J., J. Phys. Chem. Ref. Data. 1989, 18, 887.
122.Sun Y., Egawa T., Zhang L., Yao X., Jpn. J. Appl. Phys. 2002, 41 945.
123.Sclafani A., Herrmann J. M., J. Phys. Chem. 1996, 100, 13655.
124.Sun Y., Li A., Qi M., Zhang L., Yao X., Mater. Sci. & Eng. 2001,86, 185.
125.Porter J. F., Li Y. G., Chan C. K., J. Mater. Sci. 1999, 34, 1523.
126.Iida Y., Furukawa M., Aoki T., Sakai T., Appl. Spectrosc. 1998 52 673.
127.Li M., Feng Z., Xiong G., Ying P., Xin Q., Li C., J. Phys. Chem. B. 2001, 105, 8107.
128.Moreta M. P., Zallena R., Vijayb D. P., Desu S. B., Thin Solid Films 2000, 366, 8.
129.Tseng Y. H., Lin H. Y., Kuo C. S., Li Y. Y., Huang C. P., React. Kinet. Catal. L. 2006, 89, 63.
130.Maira A. J., Yeung K. L., Lee C. Y., Yue P. L., Chan C. K., J. Catal. 2000, 192 185.
131.Nakaso K., Okuyama K., Shimada M., Pratsinis S. E., Chem. Eng. Sci. 2003, 58, 3327.
132.Sun Y., Li A., Qi M., Zhang L., Yao X., J. Mater. Sci. 2002, 37, 1343.
133.Janus M., Tryba B., Inagaki M., Morawaski A. W., Appl. Catal. B: Environmental. 2004, 52, 61.
134.Inagaki M., Kojin F., Tryba B., Masahiro. Toyoda, Carbon 2005, 43, 1652.
135.Sakthivel S., Kisch H., Angew. Chem. Int. Ed. 2003, 42, 4908.
136.Jiang Z., Lu C., Wu H., Ind. Eng. Chem. Res. 2005, 44, 4165.
137.Ohno T., Akiyoshi M., Umebayashi T., Asai K., Mitsui T., Matsumura M., Catal. Lett. 2004, 98, 255.
138.Lettmann C., Hildenbrand K., Kisch H., Macyk W., Maier W. F., Appl. Catal. B: Envir. 2001, 32, 215.
139.Hitoki G., Ishikawa A., Takata T., Kondo J. N., Hara M., Domen K., Chem. Lett. 2002, 7, 736.
140.Hitoki G., Takata T., Kondo J.. Hara N M., Kobayashi H., Domen. K., Chem. Commun. 2002, 16, 1698.
141.Di Valentin C., Pacchioni G., Selloni A., Phys. Rev. B 2004, 70, 85116.
142.Diwald O., Thompson T. L., Goralski E. G., Walck S. D., Yates J. T., Jr, J. Phys. Chem. B 2004, 108, 52.
143.Yates H.M., Nolan M.G., Sheel D.W., Pemble M.E., J. Photochem. Photobio. A, 2006, 179, 213.
144.Bura C., Lou., Y. B., Chen X. B., Anna C. S. Samia, Stout J., Tames L. Gole, Nano Letters 2003, 3, 1049.
145.Sano T., Negishi N., Koike K., Takeuchi K., Matsuzawa S., J. Mater. Chem. 2004, 14, 380.
146.Chen X., Burda C., J. Phys. Chem. B, 2004, 108, 15446.
147.Wagner C. D., Riggs W. M., Davis L. E., Moulder J. F., Handbook of X-ray Photoelectron Spectroscopy 1979, ed G E Muilenberg (Minnesota: Perkin-Elmer).
148.Kurtz S.R., Gordon R.G., Thin solid Films, 1986, 140, 277.
149.Irie H., Watanabe Y., Hashimoto K., Chem. Lett. 2003, 32, 772.
150.Weib H., Fernandez A., Kisch H., Angew. Chem. Int. Ed. 2001, 40, 3825.
151.Chou P. W., Treschev S., Chung P. H., Cheng C. L., Tseng Y. H., Chen Y. J., Wong M. S., Appl. Phys. Lett., 2006, 89, 131919.
152.Iijima S., Nature, 1991, 354, 56.
153.Iijima S., Ichihashi T., Nature, 1993, 363, 603.
154.Ajayan P. M., Chem. Rev., 1999, 99, 1787.
155.Wang G. X., Ahn J., Yao J., Lindsay M., Liu H. K., Dou S. X., J. Power Sources, 2003, 119, 16.
156.Che G., B. Lakshmi B., Martin C. R., Fisher E. R., Langmuir, 1999, 15, 750.
157.Gong K. P., Yan Y. Z., Zhang M. N., Su L., Xiong S. X., Mao L., Analytical Science, 2005, 21, 1383.
158.Wang W., Serp P., Kalck P., Faria J.L., Appl. Catal. B 56, 2005, 305.
159.Yu Y., Appl. Catal. A 289, 2005, 186.
160.Wang W., Serp P., Kalck P., Faria J.L., J. Mol. Catal. A 235, 2005, 194.
161.Ou Y., Lin J. D., Fang S. M., Liao D. W., Chem. Phy. Lett. 2006, 429, 199.
162.Yu Y., Yu J. C., Yu J. G., Kwok Y. C., Che Y. K., Zhao J. C., Ding L., Ge W. K., Wong P. K., Appl. Catal. A 289, 2005, 186.
163.Jitianu A., Cacciaguerra T., Benoit R., Delpeux S., Beguin F., Bonnamy S., Carbon 42, 2004, 1147.
164.Kisch H., Macyk W., ChemPhysChem 3, 2002, 399.
165.Zhang F., Chen J., Zhang X., Gao W., Jin R., Guan N., Li Y., Langmuir 20, 2004, 9329.
166.Juang Z.Y., Chien I.P., Lai J.F., Tsai C.H., Diamond and Relatted materials. 13, 2004, 1203.
167.Liu J., Webster S., Carroll D. L., J. Phys. Chem. B 109, 2005, 15769.
168.Wagner C D, Riggs W M, Davis L E and Moulder J F Handbook of X-ray Photoelectron Spectroscopy ed. G. E. Muilenberg Perkin-Elmer Co. Minnesota 1979
169.Chen W., Fadeev A. Y. Hsieh M.C., Oner D., Youngblood J., Mcarthy T.J., Langmuir, 15, 3395, 1999.
170.Kawai A., Nagata H., Japan.J. Appl. Phys. 1994, 33, 1283.
171.Oner D., Mcarthy T.J., Langmuir 2000, 16, 7777.
172.Good R.J., Contact angle, in: K.L. Mittal (Ed.), Wettability and Adhesion, VSP, Utrecht, 1993, 3.
173.Wolfram E., Faust R., in: Wenzel J.F. Faraday (Ed.),Wetting, Spreading and Adhesion, Academic Press, London, 1978, Chapter 10.
174.De Gennes P.G., Rev. Mod. Phys. 57 (1985) 827.
175.Fowkes F.M., Advances in Chemistry Series, American Chemical Society, 1964, 43.
176.Wenzel R.N., Ind. Eng. Chem. 28, 1936) 988.
177.Hazlett R.D., in: Mittal K.L. (Ed.), Wettability and Adhesion, VSP, Utrecht, 1993, 173.
178.Uelzen T., Muller J., Thin Solid Films. 2003, 434, 311.
179.Adamson, A.; Gast, A. Physical Chemistry of Surfaces; Wiley- Interscience: New York, 1997.
180.Jung S.C., Kim S.J., Imaishi N., Cho Y.I., Appl. Catal. B 2005, 55, 253.
181.Dohshi S., Anpo M., Okuda S., Kojima T., Topics Catal. 2005, 35, 327.
182.Fan J.G., Tang X.J., Zhao Y. P., Nanotechnology. 2004, 15, 501.
183.Takeuchi M., Sakamoto K., Martra G., Coluccia S., Anpo M., J. Phys. Chem. B 2005, 109, 15422.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔