跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/20 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳守鈞
研究生(外文):Shou-jyun Chen
論文名稱:角質蛋白-1及C反應蛋白的交互作用對人體主動脈內皮細胞的影響
論文名稱(外文):Interaction between cytokeratin-1 and C-reactive protein in human aortic endothelial cells
指導教授:黃光策
指導教授(外文):Kuang-tse Huang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:氧化低密度脂蛋白C反應蛋白角質蛋白-1
外文關鍵詞:CK1CRPoxLDL
相關次數:
  • 被引用被引用:1
  • 點閱點閱:586
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
動脈硬化先前被認為是脂質堆積的疾病,屬於一種慢性發炎反應。最近研究學者認為,C反應蛋白(C-reactive protein;CRP)在動脈硬化的形成扮演了重要的角色。在內皮細胞中,CRP會降低一氧化氮(nitric oxide;NO)的釋放和一氧化氮合成酶 (endothelial nitric oxide synthase;eNOS)蛋白的表現量。過去實驗發現CRP/oxLDL分子數比1:4時,造成內皮細胞NO釋放量顯著的降低,但其他分子數比對其細胞產生較少影響。為了更進一步探討CRP/oxLDL複合體不同比例下的影響,複合體以2% uranyl acetate負染色並使用TEM觀察其聚集現象。CRP/oxLDL隨著分子數比的減少,造成複合體零星塊狀聚集、鏈狀聚集、小範圍聚集、塊狀聚集。CRP/oxLDL複合體分子數比為1:4形成鏈狀聚集。另一方面,過去我們利用親和性管柱實驗證實cytokeratin-1 (CK1)會和CRP產生結合。因此我們探討CK1 對CRP引發內皮細胞NO釋放量的影響,經由培養基添加CK1蛋白、使用N-(1-Stearyl)-maleimide (SM)傳送CK1蛋白進入內皮細胞或轉染CK1 gene進入內皮細胞等實驗。這些實驗皆抑制CRP引起內皮細胞NO釋放量的下降,推測CK1能和CRP結合,但缺乏內皮細胞NO釋放的訊號傳遞。
Atherosclerosis previously considered a lipid storage disease involves an ongoing inflammatory response. Recent investigations show that C-reactive protein (CRP) plays an important role in atherosclerotic progress by decreasing nitric oxide (NO) release and endothelial NO synthase (eNOS) expression in endothelial cells (ECs). Previous, we demonstrated a molar ratio CRP : oxidized low density lipoprotein (oxLDL) = 1: 4 resulted in a synergic reduction of NO release from ECs whereas the other ratio of CRP/oxLDL complex had less effect on NO release. To further elucidate the differential effect of various CRP/oxLDL complexes, we stained these complexes with 2% uranyl acetate and investigated their aggregation patterns using transmission electron microscopy. Our results showed block aggregation, chain aggregation, aggregation to block aggregation with decreasing molar ratio of the CRP/oxLDL complex. The ratio 1:4 of the CRP/oxLDL complex formed chain aggregation. On the other hand, we also demonstrated the binding of cytokeratin-1 (CK1) to CRP using a CRP affinity column. To study the effect of CK1 on the CRP-induced NO release, CK1 protein was added in the medium, delivered into cells by SM, and expressed by transfected CK1 gene. All these treatments interfered the CRP effect on reduction of NO release, suggesting that CK1 is able to bind to CRP but lacks a transduction pathway in ECs.
目錄

中文摘要………………………………………………………..............Ⅰ
英文摘要………………………………………………………......……Ⅱ
目錄………………………………………………………………..……Ⅳ
圖目錄………………………………………………………..………....Ⅷ
表目錄…………………………………………………………….….…Ⅹ
符號…………………………………………………..…………............Ⅸ
第一章 緒論…………………………………………………..…………1
1.1 前言…………………………………………………………..…….1
1.2 文獻回顧……………………………………………………..…….2
1.2.1內皮細胞………………………………………………...……...2
1.2.2一氧化氮(Nitric oxide;NO)、一氧化氮合成酶(Nitric oxide
synthase;NOS)………………………………………….……..3
1.2.3血管舒張(Vasodilation)……………………………………..….5
1.2.3 C反應蛋白(C-reactive protein,CRP)………………………….8
1.2.4脂蛋白 (lipoprotein)……………………...………….……….13
1.2.5超氧陰離子 (superoxide;O2-)…………..……………...…….18
1.2.6角質-1(Cytokeratin-1;CK1)……………………………...…...20
1.2.7研究動機與目的……………………………………….……...20
第二章 實驗儀器器材藥品……………………………………………22
2.1 實驗儀器…………………………………………………...…..…22
2.2 實驗器材………………………………………………….…..…..24
2.3 實驗藥品 ………………………..……………………….…..…..25
2.3.1 細胞培養…………………………………………….…..…...25
2.3.2 LDL的製備…………………………………………………...27
2.3.3 oxLDL的製備…………………………………….…...……...27
2.3.4 CRP的製備 ……………………………………………....….27
2.3.5 Limulus analysis (LAL) test………..………………….…...…28
2.3.6 蛋白質濃度測定……..…………………………………....…28
2.3.7 Cytokeratin-1 (CK1)的製備……………………………...…...28
2.3.8 N-(1-stearyl)-maleimide的製備………………………………29
2.3.9 選殖(Subclone)及轉染(Transfection)……….....…..….…......29
2.3.10 NO釋放量的測定………….………………………...……...31
2.3.11 oxLDL/CRP不同濃度組合變化及O2-測量…………...……31
第三章 實驗步驟與方法……………………………………….……...32
3.1人類主動脈血管內皮細胞培養…………………………..….……32
3.2 LDL的製備—密度梯度超高速離心法………………………..…34
3.3 oxLDL的製備……………………………………………..………36
3.4 CRP的製備………………………………………………..………38
3.5蛋白質濃度測定…………………………………………..……….39
3.6利用親和性管柱純化Cytokeratin-1 (CK-1)……...………………41
3.7培養基中加入CK1對CRP引起內皮細胞一氧化碳釋放量下降的影響…………………………………………...................…..…….43
3.8以LDL夾帶SM-CK1進入細胞對CRP引起內皮細胞NO釋放量下降的影響…………………………………………………...…...44
3.9以LDL夾帶 pcDNA-CK1進入細胞對CRP引起內皮細胞NO釋放量下降的影響………………………………………...……...…46
3.10使用inNO一氧化碳釋放量……………………………………...53
3.11用TEM觀察LDL/CRP oxLDL/CRP 不同比例下結合位置的變化…………………………………………………………………………….54
第四章 實驗結果與討論 ……………………………………………55
4.1利用穿透式電子顯微鏡觀察CRP/OXLDL複合體的結合情形...55
4.2培養基中加入CK1對CRP引起內皮細胞一氧化碳釋放量下降的影響………………………………………………………………..59
4.3以LDL夾帶SM-CK1進入細胞對CRP引起內皮細胞NO釋放量下降的影響………………...…………………………………...…60
4.4以LDL夾帶 pcDNA-CK1進入細胞對CRP引起內皮細胞NO釋放量下降的影響………………………………………………..…63
第五章 結論與未來展望 ……………………………………………68
附錄A oxLDL/CRP在不同濃度下對人類內皮細胞O2-釋放的影響…70
A.1 添加不同O2-抑制劑對內皮細胞O2-釋放的影響……….…..72
A.2 CRP對內皮細胞O2-釋放的影響……………………..………72
A.3 oxLDL對內皮細胞O2-釋放的影響………………….………74
A.4 CRP/oxLDL對內皮細胞O2-釋放的影響………………..…...75
參考文獻 ………………………………………………………………79
























圖目錄
圖1.1 caveolae 的結構圖……...………………………………...………3
圖1.2 一氧化氮血管舒張傳遞路徑…………………………….………9
圖1.3 CRP結構圖………………………………………………..……..10
圖1.4 CRP-PCh 複合體結構圖………………………………….…….11
圖1.5 LDL結構圖…………..…………………………………16
圖3.1 N-(1-stearyl)-maleimide合成流程圖……………………………45
圖3.2 Palimitoyl poly-L-lysine合成流程圖……………………….…...52
圖3.3 pCMV-Sport6ccdb結構圖……………………………………….52
圖3.4 pcC-myc結構圖…………………………………………………53
圖4.1 CRP/oxLDL不同濃度下TEM圖……………………….………56
圖4.2 CRP/LDL不同濃度下TEM圖………………………………….58
圖4.3培養基中加入CK1對CRP引起內皮細胞一氧化碳釋放量之影響……………………………………………………………......60
圖4.4 利用FT-IR得其N-(1-stearyl)-maleimide圖譜…………………62
圖4.5 螢光顯微鏡觀察LDL-SM-CK1-FITC進入內皮細胞的狀況…62
圖4.6 LDL夾帶SM-CK1進入細胞對CRP引起內皮細胞NO釋放量之影響…………………………………………………………..63
圖4.7利用FTIR得其 Poly-L-lysine圖譜……………………………..65
圖4.8利用FTIR得其pal-Poly-L-lysine圖譜…………………………66
圖4.9 分析載體改殖1%瓊脂膠電泳圖………………………………66
圖4.10 LDL夾帶 pcDNA-CK1進入細胞對CRP引起內皮細胞NO釋放量之影響……………………………………………………..67
圖A.1 添加不同O2-抑制劑對內皮細胞O2-釋放的影響………….......73
圖A.2 CRP對內皮細胞O2-釋放的影響……………………………….74
圖A.3 oxLDL對內皮細胞O2-釋放的影響…………………………….75
圖A.4 CRP/oxLDL對內皮細胞O2-釋放的影響………………………77
圖A.5 CRP/oxLDL對內皮細胞O2-釋放的影響………………...…….78










表目錄

表1-1 內皮細胞調控血管內平衡………………………………………2
表1.2 在內皮細胞中和Caveolae相關的蛋白...…..……………………4
表1.3 Nitric oxide synthase isoforms…………………………………...6
表1.4 Cell and tissue types that express constitutive and inducible nitric oxide synthases…………………………………………………...7
表3.1 超高速離心密度梯度分佈圖……………………………...…....35
表A.1 oxLDL/CRP實驗組合..................................................................70
Reference List

[1]J. D. Pearson, Normal endothelial cell function, Lupus., 9 (2000) 183-188.
[2]G. E. Palade, The fine structure of blood capillaries, J. Appl. Phys., 24 (1953) 1424.
[3]E. YAMADA, The fine structure of the gall bladder epithelium of the mouse, J. Biophys. Biochem. Cytol., 1 (1955) 445-458.
[4]R. G. Anderson, The caveolae membrane system, Annu. Rev. Biochem., 67:199-225. (1998) 199-225.
[5]P. G. Frank, S. E. Woodman, D. S. Park, and M. P. Lisanti, Caveolin, caveolae, and endothelial cell function, Arterioscler. Thromb. Vasc. Biol., 23 (2003) 1161-1168.
[6]E. J. Smart, G. A. Graf, M. A. McNiven, W. C. Sessa, J. A. Engelman, P. E. Scherer, T. Okamoto, and M. P. Lisanti, Caveolins, liquid-ordered domains, and signal transduction, Mol. Cell Biol., 19 (1999) 7289-7304.
[7]R. F. Furchgott and J. V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature., 288 (1980) 373-376.
[8]L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns, and G. Chaudhuri, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. U. S. A., 84 (1987) 9265-9269.
[9]L. J. Ignarro, G. Cirino, A. Casini, and C. Napoli, Nitric oxide as a signaling molecule in the vascular system: an overview, J. Cardiovasc. Pharmacol., 34 (1999) 879-886.
[10]M. A. Tayeh and M. A. Marletta, Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor, J. Biol. Chem., 264 (1989) 19654-19658.
[11]L. J. Ignarro, C. Napoli, and J. Loscalzo, Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: an overview, Circ. Res., 90 (2002) 21-28.
[12]M. K. Chehal and D. J. Granville, Cytochrome p450 2C (CYP2C) in ischemic heart injury and vascular dysfunction, Can. J. Physiol Pharmacol., 84 (2006) 15-20.
[13]P. Kubes, M. Suzuki, and D. N. Granger, Nitric oxide: an endogenous modulator of leukocyte adhesion, Proc. Natl. Acad. Sci. U. S. A., 88 (1991) 4651-4655.
[14]C. R. De, P. Libby, H. B. Peng, V. J. Thannickal, T. B. Rajavashisth, M. A. Gimbrone, Jr., W. S. Shin, and J. K. Liao, Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines, J. Clin. Invest., 96 (1995) 60-68.
[15]J. Seki, M. Nishio, Y. Kato, Y. Motoyama, and K. Yoshida, FK409, a new nitric-oxide donor, suppresses smooth muscle proliferation in the rat model of balloon angioplasty, Atherosclerosis., 117 (1995) 97-106.
[16]S. Moncada and A. Higgs, The L-arginine-nitric oxide pathway, N. Engl. J. Med., 329 (1993) 2002-2012.
[17]U. Forstermann, E. I. Closs, J. S. Pollock, M. Nakane, P. Schwarz, I. Gath, and H. Kleinert, Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions, Hypertension., 23 (1994) 1121-1131.
[18]S. Dimmeler, B. Assmus, C. Hermann, J. Haendeler, and A. M. Zeiher, Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis, Circ. Res., 83 (1998) 334-341.
[19]E. Chavakis, E. Dernbach, C. Hermann, U. F. Mondorf, A. M. Zeiher, and S. Dimmeler, Oxidized LDL inhibits vascular endothelial growth factor-induced endothelial cell migration by an inhibitory effect on the Akt/endothelial nitric oxide synthase pathway, Circulation., 103 (2001) 2102-2107.
[20]B. S. Taylor, L. H. Alarcon, and T. R. Billiar, Inducible nitric oxide synthase in the liver: regulation and function, Biochemistry (Mosc. )., 63 (1998) 766-781.
[21]W. Tillet and J. T.Francis, Serological reactions in pneumonia with a nonprotein somatic fraction of pneumococcus, Journal of Experimental Medicine, 52 (1930) 561-571.
[22]P. Calabro, J. T. Willerson, and E. T. Yeh, Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells, Circulation., 108 (2003) 1930-1932.
[23]K. Yasojima, C. Schwab, E. G. McGeer, and P. L. McGeer, Generation of C-reactive protein and complement components in atherosclerotic plaques, Am. J. Pathol., 158 (2001) 1039-1051.
[24]S. Kobayashi, N. Inoue, Y. Ohashi, M. Terashima, K. Matsui, T. Mori, H. Fujita, K. Awano, K. Kobayashi, H. Azumi, J. Ejiri, K. Hirata, S. Kawashima, Y. Hayashi, H. Yokozaki, H. Itoh, and M. Yokoyama, Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein, Arterioscler. Thromb. Vasc. Biol., 23 (2003) 1398-1404.
[25]W. J. Jabs, B. A. Logering, P. Gerke, B. Kreft, E. M. Wolber, M. H. Klinger, L. Fricke, and J. Steinhoff, The kidney as a second site of human C-reactive protein formation in vivo, Eur. J. Immunol., 33 (2003) 152-161.
[26]Q. Dong and J. R. Wright, Expression of C-reactive protein by alveolar macrophages, J. Immunol., 156 (1996) 4815-4820.
[27]S. Black, I. Kushner, and D. Samols, C-reactive Protein, J. Biol. Chem., 279 (2004) 48487-48490.
[28]A. K. Shrive, G. M. Cheetham, D. Holden, D. A. Myles, W. G. Turnell, J. E. Volanakis, M. B. Pepys, A. C. Bloomer, and T. J. Greenhough, Three dimensional structure of human C-reactive protein, Nat. Struct. Biol., 3 (1996) 346-354.
[29]S. Verma, P. E. Szmitko, and E. T. Yeh, C-reactive protein: structure affects function, Circulation., 109 (2004) 1914-1917.
[30]D. Thompson, M. B. Pepys, and S. P. Wood, The physiological structure of human C-reactive protein and its complex with phosphocholine, Structure., 7 (1999) 169-177.
[31]M. C. Mullenix and R. F. Mortensen, Calcium ion binding regions in C-reactive protein: location and regulation of conformational changes, Mol. Immunol., 31 (1994) 615-622.
[32]S. P. Ballou and I. Kushner, C-reactive protein and the acute phase response, Adv. Intern. Med., 37:313-36. (1992) 313-336.
[33]A. Agrawal, M. J. Simpson, S. Black, M. P. Carey, and D. Samols, A C-reactive protein mutant that does not bind to phosphocholine and pneumococcal C-polysaccharide, J. Immunol., 169 (2002) 3217-3222.
[34]E. Paffen and M. P. DeMaat, C-reactive protein in atherosclerosis: A causal factor?, Cardiovasc. Res., 71 (2006) 30-39.
[35]J. V. Castell, M. J. Gomez-Lechon, M. David, R. Fabra, R. Trullenque, and P. C. Heinrich, Acute-phase response of human hepatocytes: regulation of acute-phase protein synthesis by interleukin-6, Hepatology., 12 (1990) 1179-1186.
[36]S. Verma, S. H. Li, M. V. Badiwala, R. D. Weisel, P. W. Fedak, R. K. Li, B. Dhillon, and D. A. Mickle, Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein, Circulation., 105 (2002) 1890-1896.
[37]S. Devaraj, P. R. Kumaresan, and I. Jialal, Effect of C-reactive protein on chemokine expression in human aortic endothelial cells, J. Mol. Cell Cardiol., 36 (2004) 405-410.
[38]R. E. Gerszten, E. A. Garcia-Zepeda, Y. C. Lim, M. Yoshida, H. A. Ding, M. A. Gimbrone, Jr., A. D. Luster, F. W. Luscinskas, and A. Rosenzweig, MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions, Nature., 398 (1999) 718-723.
[39]V. Pasceri, J. T. Willerson, and E. T. Yeh, Direct proinflammatory effect of C-reactive protein on human endothelial cells, Circulation., 102 (2000) 2165-2168.
[40]V. Pasceri, J. S. Cheng, J. T. Willerson, and E. T. Yeh, Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs, Circulation., 103 (2001) 2531-2534.
[41]S. K. Venugopal, S. Devaraj, and I. Jialal, C-reactive protein decreases prostacyclin release from human aortic endothelial cells, Circulation., 108 (2003) 1676-1678.
[42]S. Devaraj, D. Y. Xu, and I. Jialal, C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis, Circulation., 107 (2003) 398-404.
[43]I. Juhan-Vague and M. C. Alessi, Plasminogen activator inhibitor 1 and atherothrombosis, Thromb. Haemost., 70 (1993) 138-143.
[44]L. Li, N. Roumeliotis, T. Sawamura, and G. Renier, C-reactive protein enhances LOX-1 expression in human aortic endothelial cells: relevance of LOX-1 to C-reactive protein-induced endothelial dysfunction, Circ. Res., 95 (2004) 877-883.
[45]S. K. Venugopal, S. Devaraj, I. Yuhanna, P. Shaul, and I. Jialal, Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells, Circulation., 106 (2002) 1439-1441.
[46]S. Verma, C. H. Wang, S. H. Li, A. S. Dumont, P. W. Fedak, M. V. Badiwala, B. Dhillon, R. D. Weisel, R. K. Li, D. A. Mickle, and D. J. Stewart, A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis, Circulation., 106 (2002) 913-919.
[47]M. Torzewski, C. Rist, R. F. Mortensen, T. P. Zwaka, M. Bienek, J. Waltenberger, W. Koenig, G. Schmitz, V. Hombach, and J. Torzewski, C-reactive protein in the arterial intima: role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis, Arterioscler. Thromb. Vasc. Biol., 20 (2000) 2094-2099.
[48]K. H. Han, K. H. Hong, J. H. Park, J. Ko, D. H. Kang, K. J. Choi, M. K. Hong, S. W. Park, and S. J. Park, C-reactive protein promotes monocyte chemoattractant protein-1--mediated chemotaxis through upregulating CC chemokine receptor 2 expression in human monocytes, Circulation., 109 (2004) 2566-2571.
[49]M. K. Chang, C. J. Binder, M. Torzewski, and J. L. Witztum, C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids, Proc. Natl. Acad. Sci. U. S. A., 99 (2002) 13043-13048.
[50]S. J. Kim, D. Gershov, X. Ma, N. Brot, and K. B. Elkon, Opsonization of apoptotic cells and its effect on macrophage and T cell immune responses, Ann. N. Y. Acad. Sci., 987:68-78. (2003) 68-78.
[51]Y. Hattori, M. Matsumura, and K. Kasai, Vascular smooth muscle cell activation by C-reactive protein, Cardiovasc. Res., 58 (2003) 186-195.
[52]C. H. Wang, S. H. Li, R. D. Weisel, P. W. Fedak, A. S. Dumont, P. Szmitko, R. K. Li, D. A. Mickle, and S. Verma, C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle, Circulation., 107 (2003) 1783-1790.
[53]G. Nickenig and D. G. Harrison, The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: part I: oxidative stress and atherogenesis, Circulation., 105 (2002) 393-396.
[54]J. E. Salmon and L. Pricop, Human receptors for immunoglobulin G: key elements in the pathogenesis of rheumatic disease, Arthritis Rheum., 44 (2001) 739-750.
[55]R. E. Crowell, T. W. Du Clos, G. Montoya, E. Heaphy, and C. Mold, C-reactive protein receptors on the human monocytic cell line U-937. Evidence for additional binding to Fc gamma RI, J. Immunol., 147 (1991) 3445-3451.
[56]T. P. Zwaka, V. Hombach, and J. Torzewski, C-reactive protein-mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis, Circulation., 103 (2001) 1194-1197.
[57]楊亞璇, C反應蛋白/氧化低密度脂蛋白對人體大主動脈內皮細胞超氧陰離子產生之影響, 國立中正大學化學工程研究所碩士論文, (2006).
[58]C. Y. Yang, S. H. Chen, S. H. Gianturco, W. A. Bradley, J. T. Sparrow, M. Tanimura, W. H. Li, D. A. Sparrow, H. DeLoof, M. Rosseneu, and ., Sequence, structure, receptor-binding domains and internal repeats of human apolipoprotein B-100, Nature., 323 (1986) 738-742.
[59]T. J. Knott, R. J. Pease, L. M. Powell, S. C. Wallis, S. C. Rall, Jr., T. L. Innerarity, B. Blackhart, W. H. Taylor, Y. Marcel, R. Milne, and ., Complete protein sequence and identification of structural domains of human apolipoprotein B, Nature., 323 (1986) 734-738.
[60]H. Esterbauer, J. Gebicki, H. Puhl, and G. Jurgens, The role of lipid peroxidation and antioxidants in oxidative modification of LDL, Free Radic. Biol. Med., 13 (1992) 341-390.
[61]N. R. Madamanchi, A. Vendrov, and M. S. Runge, Oxidative stress and vascular disease, Arterioscler. Thromb. Vasc. Biol., 25 (2005) 29-38.
[62]Satoshi Yamada and Nobuhiro Yamada, Model Analysis of Foam Cell Formation in Atherosclerosis, Japanese Society for Bioinformatics, (2007).
[63]T. Sawamura, N. Kume, T. Aoyama, H. Moriwaki, H. Hoshikawa, Y. Aiba, T. Tanaka, S. Miwa, Y. Katsura, T. Kita, and T. Masaki, An endothelial receptor for oxidized low-density lipoprotein, Nature., 386 (1997) 73-77.
[64]R. S. Vohra, J. E. Murphy, J. H. Walker, S. Ponnambalam, and S. Homer-Vanniasinkam, Atherosclerosis and the Lectin-like OXidized low-density lipoprotein scavenger receptor, Trends Cardiovasc. Med., 16 (2006) 60-64.
[65]I. V. Smirnova, M. Kajstura, T. Sawamura, and M. S. Goligorsky, Asymmetric dimethylarginine upregulates LOX-1 in activated macrophages: role in foam cell formation, Am. J. Physiol Heart Circ. Physiol., 287 (2004) H782-H790.
[66]T. Aoyama, M. Chen, H. Fujiwara, T. Masaki, and T. Sawamura, LOX-1 mediates lysophosphatidylcholine-induced oxidized LDL uptake in smooth muscle cells, FEBS Lett., 467 (2000) 217-220.
[67]L. Cominacini, A. F. Pasini, U. Garbin, A. Davoli, M. L. Tosetti, M. Campagnola, A. Rigoni, A. M. Pastorino, C. Lo, V, and T. Sawamura, Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species, J. Biol. Chem., 275 (2000) 12633-12638.
[68]MASAKI Tomoh and SAWAMURA Tatsuya, Endothelin and endothelial dysfunction, Proceedings of the Japan Academy, 82 (2006) 17-24.
[69]J. M. Li and A. M. Shah, Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology, Am. J. Physiol Regul. Integr. Comp Physiol., 287 (2004) R1014-R1030.
[70]H. Tao, D. R. Cox, and K. A. Frazer, Allele-specific KRT1 expression is a complex trait, PLoS. Genet., 2 (2006) e93.
[71]F. Mahdi, Z. Shariat-Madar, R. F. Todd, III, C. D. Figueroa, and A. H. Schmaier, Expression and colocalization of cytokeratin 1 and urokinase plasminogen activator receptor on endothelial cells, Blood., 97 (2001) 2342-2350.
[72]A. H. Schmaier, The plasma kallikrein-kinin system counterbalances the renin-angiotensin system, J. Clin. Invest., 109 (2002) 1007-1009.
[73]李堯泰, C反應蛋白/氧化低密度脂蛋白對人類主動脈內皮細胞釋放一氧化氮之影響, 國立中正大學化學工程研究所碩士論文, (2004).
[74]郭昱志, 不同組合之(氧化)低密度脂蛋白/C反應蛋白對人類主動脈內皮細胞釋放一氧化氮之影響, 國立中正大學化學工程研究所碩士論文, (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top