跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳永泰
研究生(外文):Yung-Tai Wu
論文名稱:錳氧化物的合成與鑑定及其應用
論文名稱(外文):Synthesis and Characterization of Manganese Oxides as well as Their Applications
指導教授:胡啟章
指導教授(外文):Chi-Chang Hu
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:95
語文別:英文
論文頁數:142
中文關鍵詞:錳氧化物超級電容器場發射
外文關鍵詞:Manganese oxidesEelctrochemical CapacitorField-Emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:449
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
由文獻中可得之錳氧化物具有優異之電化學電容器行為,但由於在活性物質的量增加時,其表現受到導電性不良而有所偏離理想之電容器。因此在第二章中,以單步驟合成的方式合成錳氧化物與多壁耐米探管之複合電極-稱之為陽極共沈積。由此法所合成之複合電極,其比電容(160降至80 F/g)對所被覆(1.5增至4.5 mg/cm2)的量成一線性關係。此外,發現添加多壁奈米碳管可改變錳氧化物之沈積機制以及當施予反覆之循環伏安測試,其顯示出電化學活化之行為-電化學電容器應答隨著掃描圈數而有所改善。
於第三章中,利用溶膠-凝膠法來合成錳氧化物。經由X光繞射方、穿隧式電子顯微鏡分析後,知以溶膠-凝膠法所得產物為三氧化四錳(Mn3O4)與水錳礦(MnOOH)之混合物。此外,亦可利用實驗設計來得到奈線狀物(nanowire)-水錳礦之徑長比(aspect ratio)的數學方程式回歸;在電化學行為測試上,發現此混合態之錳氧化物具有與第一章中複合電極相同行為-電化學活化程序,而在經過此步驟後其行為近似於理想之電化學電容器。
第四章主要為釐清溶膠-凝膠法所合成之錳氧化物混合物中,何者真正為電化學電容器活性物質。嘗試以簡單的化學法來合成單一三氧化四錳與水錳纊。在第3章中,利用錯酸錳、水及選擇性加入少量之氧化劑在高溫下進行反應(水熱法),成本s備出具有高純度結晶型之錳氧化物。經材料分析得知,以此所得產物之組成分別為單晶型態之三氧化四錳與水錳纊物質。經有電化學測試後,發現三氧化四錳為具有電化學活性之物質。同樣的電化學活化程序,依然在此扮演重要的角色。在經過電化學活化後三氧化四錳展現出一理想電容器之行為,其比電容更高達224F/g;此外、在此電化學活化過程中,三氧化錳的單晶結構隨著循環伏安掃描圈數而漸漸崩解,並伴隨著似非結晶態的奈米片狀物(nanoflake)的出現。
一維之奈米材料在場發射的發射源應用上具有相當之潛力,近年來有釵h的文獻發表有關於於奈米碳管在此領域之應用,發現其具有極佳之場發行為,但因其合成與純化之步驟嚴苛進而限制其在商業化發展。因此尋找一具有高熱穩定性與製成簡易之物質成為現在最急迫之研究主題,鑑於對熱的穩定性要求,金屬氧化物歲成為一重要的研究對象。在文獻上有釵h之報導有關於氧化鋅、氧化鎢、氧化銦以及氧化鈷等均具有良好之場發射行為。其合成條件大多為利用化學器相沈積法(CVD)、雷射剝削法與輔助版模法來製備。其有合成環境需在高溫、高純度反應物或複雜之至程監控雨後續產物純化之問題。因此在第五章裡,利用在醋酸錳水溶液為前驅物,以脈衝式陽極沈積方式來合成所需一維奈米材料,進而應用於場發射源上。此方式不僅可輕易控制場發射源之長度,且可大面積生產於釵h基材上例如石墨、導電玻璃、矽晶片等。經材料分析後,可知此場發源為由寬小於10奈米、長可至數微米的水錳礦與三氧化四錳所組成。在場發測試中,其導通電壓(turn-on voltage)為3.4 V/μm,具有相當之前景可應用於場發射源之材料,而脈衝式陽極沈積可為具有相當潛力成為一新興簡易製程用於合成一維奈米材料。
最後,本文的總結與未來展望整理於第六章中。
Manganese oxides, MnOx, synthesized by anodic deposition have excellent electrochemical capacitive performance as being a thin film electrode. In chapter 1 is to improve the drawback of increasing thickness, one-step process so-called anodic co-deposition, is proposed to synthesize MnOx-MWCNT composite by taking the advantage of multiwall carbon nanotubes (MWCNTs) that possess conductivity. Thick composites composed of crystalline manganese dioxide (MnO2) and MWCNTs were successfully codeposited onto a graphite substrate. The rate/nucleation mechanism of MnO2 deposition was significantly influenced by the introduction of MWCNTs in the deposition baths. The specific capacitance of thick MnO2-MWCNT composites, measured from cyclic voltammetry (CV) or chronopotentiometry (CP) in a potential window of 1.0 V, is monotonously decreased from ca. 160 to 80 F/g with increasing the oxide loading from 1.5 to 4.5 mg/cm2. The lower specific capacitance of thick MnO2 and MnO2-MWCNTs deposits is reasonably attributed to the relatively poor utilization of electroactive species as well as the compact structure in comparison with a thin Mn oxide deposit (< 1 μm). The capacitive performance of these thick MnO2 deposits is significantly improved by the application of electrochemical activation and the introduction of MWCNTs, revealing the promising improvement in the capacity of electrode.
In chapter 2, single crystals of MnOOH and Mn3O4 were synthesized through a simple sol-gel route. The manganese oxides prepared in this work are demonstrated to be a mixture consisting of MnOOH and Mn3O4 single crystals. The relative amount of MnOOH in the mixture gradually increased with increasing aspect ratio of the MnOOH nanorods. The aspect ratio controlled growth of MnOOH nanorods without using templates is predictable by an equation correlated with the preparation variables. Thick coatings of manganese oxides with this novel structure are demonstrated to show capacitive-like characteristics for the supercapacitor applications.
In order to clarify which one, Mn3O4 or MnOOH, is the dominant role in EC application. In chapter 3 we report a facile route to synthesize the single crystalline Mn3O4 and MnOOH. Both of them used the Mn(CH3COO)2.4H2O as the precursor and reacted via hydrothermal process. After the EC measurement, Mn3O4 was confirmed as the major contribution and that the current response gradually increases during the cycling CV measurement. With the assistance of SEM, TEM, and Raman, the structure of Mn3O4 collapse and transform into amorphous-like structure that have the capacitive performance. The specific capacitance reaches upto 244 F/g, at scan rate of 25 mV/s, which is comparable with the value of amorphous manganese oxides synthesized by anodic deposition.
1-D nanomaterialsm, defined as at least one dimension is within 100 nm, such as nanowire, nanorod, nanoneedle, etc., are promised for the elector emitter because of its high aspect ratio and the peculiar intrinsic property that differ from the bulk material. Review on the literatures about the field emission, CNT, is the best choice for the candidate of next generation electron emitter due to its unique physical, mechanical properties. But, the process about producing high quality CNT for electron emitter is too complicated to be commercialized comprehensively. People start to seek another material to replace CNT. Most of metal oxides have intrinsic properties that are tolerable to the thermal energy and stable to oxygen. Because of the nanotechnology, nanomaterial can be produced, synthesized, and designed by CVD, laser ablation, template-assisted, etc. As a result, diversiform metal oxides in with 1-D nanostructure were be studied for the electron emitter such ZnO-nanowire,-nanodeedle,-nanorod, CoOx-nanowall,-nanoneedle, WOx nanowire, and so on. Although most of these materials exhibit pretty well field emission property, the synthetic process is also a bit complex. So, we report a simple and controllable process that is applicable on several conducting substrate, even in poor conductivity, at room temperature. This process is called pulse-mode electrodeposition. We also use the process to produce 1-D MnOx nanowire and estimate the feasibility of application on electron emitter. In the characterization, we find that the single 1-D MnOx nanowire is ~10 nm in width (at the tip) and several μm in length (controllable). After the measurement of field emission property, the nanowire has an excellent value in turn-on voltage, 3.4 V/μm which is comparable with those reported in past literautres. This gives us a new chance to choose the candidate for electron emitter.
List of Content

Acknowledgments II
摘要 III
Abstract V
List of Content IX
List of Tables & Figures XII
Chapter 1 20
Introduction 20
1.1 Background of Mn-based Supercapacitors 20
1.1.1 Current Status of Manganese Oxides for Supercapacitors 22
1.1.2 Brief Review of Mn-based oxides on Supercpacitors 24
1.2 Fundamental of Field Emission 28
1.2.1 Short Review of Researches on Metal Oxides-based Field Emitter 29
1.3 Motivations and Findings 31
CHAPTER 2 60
Effects of Electrochemical Activation and Multiwall Carbon Nanotubes on the Capacitive Characteristics of Thick MnO2 Deposits 60
2.1 Introduction 60
2.2 Experimental 62
2.3 Result and Discussion 63
2.3.1 Deposition of MnO2 and MnO2-MWCNT 64
2.3.2 Textural analysis of MnO2 and MnO2-MWCNT 65
2.3.3 Effects of electrochemical activation and MWCNTs on the capacitive performance of MnO2 66
2.4 Conclusions 70
CHAPTER 3 80
Aspect Ratio Controlled Growth of MnOOH in Mixtures of Mn3O4 and MnOOH Single Crystals for Supercapacitors 80
3.1 Introduction 80
3.2 Experimental Section 81
3.3 Results and Discussion 83
3.4 Conclusions 87
Chapter 4 93
Textural and Capacitive Characteristics of Potentiodynamically Activated Mn3O4 Single-Crystals Synthesized by a Low-Temperature Hydrothermal Route 93
4.1 Introduction 93
4.2 Experimental Section 95
4.3 Results and Discussion 97
4.4 Conclusions 101
Chapter 5 112
Growth of 1-D Nanostructure Manganese Oxides for Field Emission by Pulse Electrodeposition 112
Abstract 112
5.1 Introduction 112
5.2 Experimental 113
5.3 Results and Discussion 114
5.4 Conclusions 116
Chapter 6 120
Summary and Future Work 120
6.1 Summary 120
6.2 Future Work 121
Reference 123
Publication List 141








List of Tables & Figures

Table 1.1 Overall Comparison of Electrochemical Capacitor and Battery. 39
Table 1.2 The comparison o specific capacitance between physically and chemically 40 wt% carbon mixed a-MnO2.nH2O electrodes obtained from CVs as a function of different potential sweep rate in 1 M KCl aqueous electrolyte. 46
Table 1.3 Average specific capacitance of dip-coated sol-gel (SG) and electrodeposited (ED) MnO2 films. 47
Table 3.1 Ranges of preparation variables for the synthesis of Mn3O4 and MnOOH single crystal mixtures via a sol-gel route. 92
Table 4.1 The EDX analysis results for Mn3O4 single crystals with various cycles of CV in 1 M Na2SO4. 111
Fig. 1.1 (a) Simplified Ragone plot energy storage capability of common commercial (b) primary battery system (c) secondary battery system. 34
Fig. 1.2 Characteristics of conventional capacitor, ideal electrochemical capacitor, and ideal battery. 35
Fig. 1.3 Structure of electric double layer at the interface between electrolyte and electrode. 36
Fig. 1.4 Typical cyclic voltammogram of RuO2 measured in acid electrolyte, H2SO4. 37
Fig. 1.5 Illustrating overlap of three redox capacitance (Cφ) responses to give almost constant net capacitance over an appreciable potential range, as observed with RuO2. Q is the accumulated charge(schematic). 38
Fig. 1.6 Cyclic voltammograms at 50 mV/sec for a stationary electrodeposited manganese oxy-hydroxide film (600Å) on Pt in Na2SO4, with (solid curve) and without (dashed curve) added ferrocyanide. 40
Fig. 1.7 Cyclic voltammogram taken at 5 mV/s between -0.2 and +1.0 Vversus SCE for amorphous MnO2.nH2O in 2 M KCl aqueous electrolyte. 41
Fig. 1.8 Cyclic voltammorgrams at 5 mV/s of an amorphous MnO2.nH2O electrode between -0.2 and +1.0 V versus SCE in 2 M KAl (A=Li, Na, K) electrolyte with Pt-gauze counter electrode. 42
Fig. 1.9 (a) Electrode potential versus time and (b) specific discharge capacitance versus cycle number of 2.98 mg of amorphous MnO2.nH2O in 2M KCl aqueous electrolyte cycled between -0.2 and+1.0 V relative to SCE. 43
Fig. 1.10 CVs taken at 2 mV/s between +0.1 and +0.9 V vs. Ag/AgCl reference electrode in 1 M KCl aqueous electrolyte with (a) carbon-free a-MnO2.nH2O electrode and (b) 20 wt % carbon added a-MnO2.nH2O electrode. 44
Fig. 1.11 Schematic diagram of the proposed model. Dotted line indicates imaginary boundary of active site area created by contact of carbon and a-MnO2.nH2O particle. (a) Physically mixed powder a point contact and (b) chemically mixed powder plane contact between carbon and a-MnO2.nH2O. 45
Fig. 1.12 CV of MnO2 films: (a) dip-coated sol-gel (SG300); (b) electrodeposited (ED600); 0.1 M Na2SO4. Scan rate 50 mV/s. 48
Fig. 1.13 Effect of calcinations temperature on the specific capacitance of dip-coated sol-gel MnO2 films. 49
Fig. 1.14 CVs of a-MnOx.nH2O prepared from 0.25 M MnSO4 at pH (1) 6.4, (2) 5.0, (3) 3.0 and (4) 1.0, in 0.1 M Na2SO4 at 25 mVs-1. 50
Fig. 1.15 CVs of a-MnOx.nH2O measured in (1) 0.1M Na2SO4, (2) 0.3 M KCl and (3) 0.3 M NH4NO3 at 25 mVs-1 with their (EU, EL) of (a) (0.8, 0.2) and (b) (1.0, 0) V. a-MnOx.nH2O was deposited at 0.75 V from 0.25 M MnSO4 with pH of 6.4. 51
Fig. 1.16 CVs of a- MnOx.nH2O (1) as prepared, annealed in air for 2 h at (2) 100, (3) 200, (4) 300, (5) 350 and (6) 400℃, in 0.1 M Na2SO4 at 25 mVs-1. a- MnOx.nH2O was deposited at 0.75 V from 0.25 M MnSO4 with pH of 6.4. 52
Fig. 1.17 Change of the voltammetric charge ratio of the n th (qn ) to the first (q0) cycle of CV with the cycle number for a- MnOx.nH2O (1) as prepared and annealed in air for 2 h at (2) 200 and (3) 400 ℃. a- MnOx.nH2O was deposited at 0.75 V from 0.25 M MnSO4 with pH of 6.4. 53
Fig. 1.18. XPS spectra in (a-c) Mn 2p3/2; (d-f) Mn 3s; and (g-/i) O 1s region for a- MnOx.nH2O (a, d, g) without, with annealing in air for 2 h at (b, e, h) 200 and (c, f, i) 400 ℃. a- MnOx.nH2O was deposited at 0.75 V from 0.25 M MnSO4 with pH of 6.4. 54
Figure 1.19 ZnO nanowires (A) SEM image (B) XRD pattern (C) I-E curve.34 55
Figure 1.20 ZnO nanoarray (A) SEM (B)XRD (C) I-E curve. 56
Figure 1.21 ZnO nanoneedles (A) SEM image (B) XRD patterns (C) I-E Curve. 57
Figure 1.22 WOx nanowires (a) SEM image (e) XRD pattern (f) I-E curve. 58
Figure 1.23 CoOx nanwalls (a) SEM image (e) XRD pattern (f) I-E curve. 59
Fig. 2.1 (a) Linear sweep voltammograms measured at 2 mV/s and (b) log(i)/E plots obtained from (1) 0.1 M Mn(CH3COO)2.4H2O and (2) 0.1 M Mn(CH3COO)2.4H2O and 0.05 g/L CNTs with pH of 6.4. 72
Fig. 2.2 The grazing incidence XRD patterns for (1-3) MnO2-MWCNT deposits with the charge density of deposition = (1) 3; (2) 4; (3) 5 C/cm2;and (4) an MnO2 deposit with the charge density of deposition = 4 C/cm2. 73
Fig. 2.4 Cyclic voltammograms measured in 0.1 M Na2SO4 at 25 mV s-1 for (1) MnO2 ; (2) MnO2-MWCNTs; and (3) MWCNTs. The deposition charge density for MnO2 and MnO2-MWCNTs is 4.0 C/cm2. 75
Fig. 2.5 Cyclic voltammograms of (a) MnO2 and (b) MnO2-MWCNTs deposits measured in 0.1 M Na2SO4 at 25 mV s-1 at the dipping time of 0, 15, 30, 45, 60, 80, and 120 min. (c) Cyclic voltammograms of an MnO2-MWCNTs composite (1) as-prepared; (2) newly prepared and dipped in 0.1 M Na2SO4 for 2 h; and (3) then, cycled between 0 and 1.0 V at 25 mV s-1 for ten cycles. 76
Fig. 2.6 Chronopotentiograms of (a) MnO2 and (b) MnO2-MWCNTs deposits measured in 0.1 M Na2SO4 at 5 mA/cm2 with the dipping time of (1) as-deposited; (2) 30 min; (3) 120 min. 77
Fig. 2.7 (a) Dependence of IR drops on the dipping time and (b) dependenceof IR drops and loading on the charge density of deposition for (1,3) MnO2 and (2,4) MnO2-MWCNTs deposits. 78
Figure 2.8 Dependence of CS on the deposition charge density for (1,3) MnO2 and (2,4) MnO2-MWCNTs deposits with the dipping time of (1,2) 0 and (3,4) 120 min. The MnO2 and MnO2-MWCNTs deposits for curves 2 and 4 have been dipped in 0.1 M Na2SO4 and activated by CV at 0, 15, 30, 60, and 120 min. 79
Figure 3.1 SEM (TE mode) image of manganese oxides prepared under the conditions of (XA,XB,XC,XD) = a)(1, 1, 1, 1); b) (−1,1,1,1); c) (1,1,−1,−1); and d) (1,−1,−1,−1); with the aspect ratio of MnOOH nanorods about 15, 30, 5, and 8, respectively. 88
Figure 3.2 HR-TEM (a, d); SAED patterns (b, e); and HR-TEMs of lattice fringes (c, f) for manganese oxides prepared from the conditions of (XA,XB,XC,XD) = (a-c) (1,1,−1,−1) and (d-f) (−1,1,1,1). 89
Figure 3.3 (a) XRD patterns and (b) FTIR spectra of manganese oxides prepared under the conditions of (XA,XB,XC,XD) = 1) ( 1, 1, 1, 1); 2) (−1,1,1,1); 3) (1,1,−1,−1); and 4) (1,−1,−1,−1). 90
Figure 3.4 (a) CVs of thick Mn oxide-coated electrodes with loading of (1) 6.92 and (2) 3.75 mg/cm2, prepared under the conditions of (XA,XB,XC,XD) = (−1,1,1,1) and (3) a thick MnOx deposit (4.3 mg/cm2) with electrochemical activation, plated from 0.1 M Mn(CH3COO)2•4H2O with pH of 6.4. CVs were measured in 0.5 M Na2SO4 at 25 mV/s. (b, c) SEMs of a thick Mn oxide coating (6.92 mg/cm2) prepared under the conditions of (XA,XB,XC,XD) = (−1,1,1,1) 91
Figure 4.1 (A) XRD patterns and (B) Raman spectra of as-prepared (1) Mn3O4 and (2) MnOOH. 102
Figure 4.2 (A,B) SEM and (C-D) TEM images of as-prepared (A,C) Mn3O4 and (B,D) MnOOH; insets are the corresponding SAED patterns and high resolution images. 103
Figure 4.3 Cyclic voltammograms of (A) Mn3O4 and (B) MnOOH for continuous cycling between 0 and 1.0 V in 1 M Na2SO4 at 25 mVs-1. 104
Figure 4.4 Cyclic voltammograms of (1) Birnessite; (2) Mn3O4 and (3) MnOOH with 1000 cycles of CV in 1 M Na2SO4. 105
Figure 4.5 XRD patterns of (1) a graphite substrate, (2) as-prepared Mn3O4 single crystals on a graphite substrate with (3) 10, (4) 30, (5) 85, (6) 200, (7) 1000, and (8) 2000 cycles of CV in 1 M Na2SO4. 106
Figure 4.6 SEM images of Mn3O4 with (A) 10, (B) 30, (C) 85, (D) 200, (E) 1000, and (F) 2000 cycles of CV in 1 M Na2SO4. 107
Figure 4.7 Raman spectra of (1) as-prepared Mn3O4 single crystals with (2) 10, (3) 30, (4) 85, (5) 200, (6) 1000, and (7) 2000 cycles of CV in 1 M Na2SO4, and (8) Birnessite. 108
Figure 4.8 Scheme of Mn3O4 nanoparticle structure transformation during CV-treated in 1 M Na2SO4 at 25 mVs-1. 109
Figure 4.9 (A) Cyclic voltammograms with decreasing the upper potential limit of CV and (B) specific capacitance against scan rates of CV for Mn3O4 single crystals with 2000 cycles of CV in 1 M Na2SO4. All CV curves in (A) were measured in 1 M Na2SO4 at 25 mVs-1 110
Figure 5.1 SEM images of manganese oxides, synthesized by pulse deposition onto Si-wafer, under various magnification. 117
Figure 5.2 TEM images of 1-D MnOx (A)(B)(C) and (D) XRD pattern . 118
Figure 5.3 Field-emission properties of 1-D MnOx on the Si-wafer. Typical field-emision current-voltage (I-E) curve form the nanostructured MnOx (inset is the FN plot: ln(I/V2) versus (1/V)) 119
1.Tench, D.; Warren, L. F., Electrodeposition of Conducting Transition Metal Oxide/Hydroxide Films from Aqueous Solution. Journal of the Electrochemical Society 1984, 130, (4), 869-872.
2.Brodd, R. J.; Bullock, K. R.; Leising, R. A.; Middaugh, R. L.; Miller, J. R.; Takeuchic, E., Batteries, 1977 to 2002. Journal of the Electrochemical Society 2004, 151, (3), K1-K11.
3.Fernandes, J. B.; Desai, B. D.; Dalal, V. N. K., Manganese-Dioxide - A Review of A Battery Chemical .1. Chemical Syntheses And X-Ray-Diffraction Studies of Manganese Dioxides. Journal of Power Sources 1985, 15, (4), 209-237.
4.Conway, B. E., Electrochemical Supercapacitors: Scienfific Fundamentals and Technology Applications. Kluwer Academic/Plenum Publishers: New York, 1999.
5.Thackeray, M. M.; Dekock, A.; Rossouw, M. H.; Liles, D.; Bittihn, R.; Hoge, D., Spinel Electrodes from The Li-Mn-O System for Rechargeable Lithium Battery Applications. Journal of the Electrochemical Society 1992, 139, (2), 363-366.
6.Barbieri, O.; Hahn, M.; Herzog, A.; Kotz, R., Capacitance Limits of High Surface Area Activated Carbons for Double Layer Capacitors. Carbon 2005, 43, (6), 1303-1310.
7.Hu, Z.; Srinivasan, M. P., Mesoporous High-Surface-Area Activated Carbon. Microporous and Mesoporous Materials 2001, 43, (3), 267-275.
8.Hu, Z.; Srinivasan, M. P.; Ni, Y., Preparation of Mesoporous High-Surface-Area Activated Carbon. Advanced Functional Materials 1999, 12, (1), 62-65.
9.Hu, C.-C.; Chu, C.-H., Electrochemical Impedance Characterization of Polyaniline-Coated Graphite Electrodes for Electrochemical Capacitors - Effects of Film Coverage/Thickness and Anions. Journal of Electroanalytical Chemistry 2001, 503, (1-2), 105-116.
10.Ko, J. M.; Rhee, H. W.; Park, S.-M.; Kim, C. Y., Morphology and Electrochemical Properties of Polypyrrole Films Prepared in Aqueous and Nonaqueous Solvents. Journal of the Electrochemical Society 1990, 137, (3), 905-909.
11.Bard, A. J.; Faulkner, L. R., Electrochemical Methods : Fundamental and Applications. 2nd ed.; John Wiley & Sons, Inc.: 2000; p 856.
12.Hu, C.-C.; Chang, K.-H., Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors: Effects of Codepositing Iridium Oxide. Electrochimica Acta 2000, 45, (17), 2685-2696.
13.Hu, C.-C.; Chen, W.-C.; Chang, K.-H., How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors Journal of the Electrochemical Society 2004, 151, (2), A281-A290.
14.Hu, C.-C.; Huang, Y.-H., Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors. Journal of the Electrochemical Society 1999, 149, (7), 2465-2471.
15.Hu, C.-C.; Liu, M.-J.; Chang, K.-H., Anodic Deposition of Hydrous Ruthenium Oxide for Supercapacitors. Journal of Power Sources 2007, 163, 1126–1131.
16.McKeown, D. A.; Hagans, P. L.; Carette, L. P. L.; Russell, A. E.; Swider, K. E.; Rolison, D. R., Structure of Hydrous Ruthenium Oxides: Implications for Charge Storage The Journal of Physical Chemistry B 1999, 103, (23), 4825-4832.
17.Zheng, J. P.; Cygan, P. J.; Jow, T. R., Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. Journal of the Electrochemical Society 1995, 142, (8), 2699-2703.
18.Zheng, J. P.; Jow, T. R., A New Charge Storage Mechanism for Electrochemical Capacitors. Journal of the Electrochemical Society 1995, 142, (1), L6-L8.
19.Chang, K.-H.; Wu, Y.-T.; Hu, C.-C., Key Factors Determin the Performance of RuO2-based Supercapacitors. In Recent Advances in Supercapacitors, Gupta, V., Ed. Transworld Research Network: 2006; pp 29-56.
20.Liu, K.-C.; Anderson, M. A., Porous Nickel Oxide-Nickel Films for Electrochemical Capacitors. Journal of the Electrochemical Society 1996, 143, (1), 124-130.
21.Lin, C.; Ritter, J. A.; Popov, B. N., Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors. Journal of the Electrochemical Society 1998, 145, (12), 4097-4103
22.Jeong, Y. U.; Manthiram, A., Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes. Journal of the Electrochemical Society 2002, 149, (11), A1419-A1422
23.Lee, H. Y.; Goodenough, J. B., Supercapacitor Behavior with KCl Electrolyte. Journal of Solid State Chemistry 1999, 144, 220-223.
24.Pang, S.-C.; Anderson, M. A.; Chapmanb, T. W., Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide. Journal of the Electrochemical Society 2000, 147, (2), 444-450.
25.Toupin, M.; Brousse, T.; Be´langer, D., Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Journal of Chemistry Materials 2004, 16, 3184-3190.
26.Lee, H. Y.; Kim, S. W.; Lee, H. Y., Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode. Electrochemical and Solid-State Letters 2001, 4, (3), A19-A22.
27.Hu, C.-C.; Tsou, T.-W., Capacitive and Textural Characteristics of Hydrous Manganese Oxide Prepared by Anodic Deposition. Electrochimica Acta 2002, 47, (21), 3523-3532.
28.Deheer, W. A.; Chatelain, A.; Ugarte, D., A Carbon Nanotube Field-emission Electron Source. Science 1995, 270, (5239), 1179-1180.
29.Fan, S.; Liang, W.; Dang, H.; Franklin, N.; Tombler, T.; Chapline, M.; Dai, H., Carbon Nanotube Arrays On Silicon Substrates And Their Possible Application. Physica E: Low-dimensional Systems and Nanostructures 2000, 8, (2), 179-183.
30.Nilsson, L.; Groening, O.; Emmenegger, C.; Kuettel, O.; Schaller, E.; Schlapbach, L.; Kind, H.; Bonard, J.-M.; Kern, K., Scanning Field Emission from Patterned Carbon Nanotube Film. Applied Physics Letters 2000, 76, (15), 2071-2073.
31.Lee, Y.-H.; Jang, Y.-T.; Kim, D.-H.; Ahn, J.-H.; Ju, B., Realization of Gated Field Emitters for Electrophotonic Applications Using Carbon Nanotube Line Emitters Directly Grown into Submicrometer Holes. Advanced Materials 2001, 13, (7), 479-482.
32.Gao, H.; Mu, C.; Wang, F.; Xu, D. S.; Wu, K.; Xie, Y. C.; Liu, S.; Wang, E. G.; Xu, J.; Yu, D. P., Field Emission of Large-Area and Graphitized Carbon Nanotube Array on Anodic Aluminum Oxide Template. Journal of Applied Physics 2003, 93, (9), 5602-5605.
33.Wu, M.-S.; Lee, J.-T.; Wang, Y.-Y.; Wan, C.-C., Field Emission from Manganese Oxide Nanotubes Synthesized by Cyclic Voltammetric Electrodeposition. The Journal of Physical Chemistry B 2004, 108, (42), 16331-16333.
34.Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J., Field Emission from Well-Aligned Zinc Oxide Nanowires Grown At Low Temperature. Applied Physics Letters 2002, 81, (19), 3648-3650.
35.Tseng, Y. K.; Huang, C. J.; Cheng, H. M.; Lin, I. N.; Liu, K. S.; Chen, I. C., Characterization and Field-Emission Properties of Needle-Like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films. Advanced Functional Materials 2003, 13, (10), 811-814.
36.Yeon, S. C.; Sung, W. Y.; Kim, W. J.; Lee, S. M.; Lee, H. Y.; Kim, Y. H., Field Emission Characteristics of Cuo Nanowires Grown on Brown-Oxide-Coated Cu Films on Si Substrates by Conductive Heating in Air. Journal of Vacuum Science & Technology B 2006, 24, (2), 940-944.
37.Fowler, R. H.; Nordheim, L. W., Electron Emission in Intense Electric Fields. Proc. R. Soc. London 1928, 173, A119.
38.Burgess, R. E.; H.Kroemer; Houston, J. M., Corrected Values of Fowler-Nordheim Field Emission Fuctions v(y) and s(y). Physical Review 1953, 90, (4), 155.
39.Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 2003, 15, (5), 353 - 389.
40.Spindt, C. A.; Brodie, I.; Humphrey, L.; Westerberg, E. R., Physical Properties of Thin-Film Field Emission Cathodes with Molybdenum Cones. Applied Physics Letters 1976, 47, (12), 5248-5263
41.Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354, ( 6348), 56-58.
42.Ebbesen, T. W.; Ajayan, P. M., Large-Scale Synthesis of Carbon Naanotubes. Nature 1992 358, (6383), 220-222
43.Erik T. Thostensona; Renb, Z.; Choua, T.-W., Advances in The Science and Technology of Carbon Nanotubes and Their Composites: A Review Composite Science and Technology 2001, 61, (13), 1899-1912.
44.Cassell, A. M.; Raymakers, J. A.; Kong, J.; Dai, H., Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B 1999, 103, (31), 6484-6492.
45.Zhou, G.; Duan, W.; Gu, B., First-Principles Study on Morphology and Mechanical Properties of Single-Walled Carbon Nanotube Chemical Physics Letters 2001, 333, (5), 344-349.
46.Xie, S.; Li, W.; Pan, Z.; Chang, B.; Sun, L., Mechanical and Physical Properties on Carbon Nanotube Journal of Physics and Chemistry of Solids 2000, 61, (7), 1153-1158.
47.Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; E., G., Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996, 273, (5274), 483-487.
48.Pipes, R. B.; Hubert, P., Helical Carbon Nanotube Arrays: Mechanical Properties Composites Science and Technology 2002, 62, (3), 419-428.
49.Baughman, R. H.; Zakhidov, A. A.; Heer, W. A. d., Carbon Nanotubes-the Route Toward Applications Science 2002, 297, (5582), 787-792.
50.Gamaly, E. G.; Ebbesen, T. W., Mechanism of Carbon Nanotube Formation in The Arc Discharge Physical Review B 1995, 52, (3), 2083-2089.
51.Louchev, O. A.; Sato, Y.; Kanda, H., Growth Mechanism of carbon nanotube Forests by Chemical Vapor Deposition. Applied Physics Letters 2002, 80, (15), 2752.
52.Kusunoki, M.; Suzuki, T.; Hirayama, T.; Shibata, N.; Kaneko, K., A Formation Mechanism of Carbon Nanotube Films on SiC(0001). Applied Physics Letters 2000, 77, (4), 531.
53.Liu, K.; Jiang, K.; Feng, C.; Chen, Z.; Fan, S., A Growth Mark Method for Studying Growth Mechanism of Carbon Nanotube Arrays Carbon 2005, 43, (14), 2850-2856.
54.Xu, X.; Brandes, G. R., A Method for Fabricating Large-Area, Patterned, Carbon Nanotube Field Emitters. Applied Physics Letters 1999, 74, (17), 2549.
55.Heer, W. A. d.; Chatelain, A.; Ugarte, D., A Carbon Nanotube Field-Emission Electron Source. Science 1995, 270, (5239), 1179-1180.
56.Bonard, J.-M.; Salvetat, J.-P.; Stöckli, T.; Forró, L.; Châtelain, A., Field Emission from Carbon Nanotubes: Perspectives for Applications and Clues to The Emission Mechanism Applied Physics A : Materials Science and Processing 1999, 69, (31), 245-254.
57.Xu, C. X.; Sun, X. W.; Fang, S. N.; Yang, X. H.; Yu, M. B.; Zhu, G. P.; Cui, Y. P., Electrochemically Deposited Zinc Oxide Arrays for Field Emission. Applied Physics Letters 2006, 88, (16), 161921-161923
58.Yu, T.; Zhu, Y. W.; Xu, X. J.; Shen, Z. X.; Chen, P.; Lim, C. T.; Thong, J. T. L.; Sow, C. H., Controlled Growth and Field-Emission Properties of Cobalt Oxide Nanowalls. Advanced Materials 2005, 17, (13), 1595-1599.
59.Vila, L.; Vincent, P.; Dauginet-De Pra, L.; Pirio, G. M., E.; Gangloff, L.; Demoustier-Champagne, S.; Sarazin, N.; Ferain, E.; Legras, R.; Piraux, L.; Legagneux, P., Growth and Field-Emission Properties of Vertically Aligned Cobalt Nanowire Arrays Nano Letters 2004, 4, (3), 521-524.
60.Yu, T.; Zhu, Y.; Xu, X.; Yeong, K.-S.; Shen, Z.; Chen, P.; Lim, C.-T.; Thong, J. T.-L.; Sow, C.-H., Substrate-Friendly Synthesis of Metal Oxide Nanostructures Using a Hotplate. Small 2006, 2, (1), 5.
61.Liu, J. G.; Zhang, Z. J.; Zhao, Y.; Su, X.; Liu, S.; Wang, E. G., Tuning the Field-Emission Properties of Tungsten Oxide Nanorods. Small 2005, 1, (3), 310-313.
62.Zhou, J.; Gong, L.; Deng, S. Z.; Chen, J.; She, J. C.; Xu, N. S.; Yang, R. S.; Wang, Z. L., Growth and Field-Emission Property of Tungsten Oxide Nanotip Arrays. Applied Physics Letters 2005, 87, (22), 223108-223110.
63.Zhu, Y. C.; Bando, Y.; Yin, L.; Golberg, D., Field Nanoemitters: Ultrathin BN Nanosheets Protruding from Si3N4 Nanowires Nano Letters 2006, 6, (12), 2982-2986.
64.Burke, A., Ultracapacitors: Why, How, and Where is the Technology. Journal of Power Sources 2000, 91, (1), 37-50.
65.Nian, Y.-R.; Teng, H., Nitric Acid Modification of Activated Carbon Electrodes for Improvement of Electrochemical Capacitance. Journal of the Electrochemical Society 2002, 149, (8), A1008-A1014
66.Qu, D.; Shi, H., Studies of Activated Carbons Used in Double-layer Dapacitors. Journal of Power Sources 1998, 74, (1), 99-107.
67.Chang, J.-K.; Tsai, W.-T., Material Characterization and Electrochemical Performance of Hydrous Manganese Oxide Electrodes for Use in Electrochemical Pseudocapacitors. Journal of the Electrochemical Society 2003, 150, (10), A1333-A1338
68.Hu, C.-C.; Tsou, T.-W., Ideal Capacitive Behavior of Hydrous Manganese Oxide Prepared by Anodic Deposition. Electrochemistry Communication 2002, 4, (2), 105-109.
69.Hu, C.-C.; Tsou, T.-W., The Optimization of Specific Capacitance of Amorphous Manganese Oxide for Electrochemical SupercapacitorsUsing Experimental Strategies. Journal of Power Sources 2003, 115, (1), 179-186.
70.Hu, C.-C.; Wang, C.-C., Nanostructures and Capacitive Characteristics of Hydrous Manganese Oxide Prepared by Electrochemical Deposition. Journal of the Electrochemical Society 2003, 150, (8), A1079-A1084.
71.Niu, C.; Sichel, E. K.; Hoch, R.; Moy, D.; Tennent, H., High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes. Applied Physics Letters 1997, 70, (11), 1480-1482.
72.An, K. H.; Jeon, K. K.; Heo, J. K.; Lim, S. C.; Bae, D. J.; Lee, Y. H., High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole. Journal of the Electrochemical Society 2002, 149, (8), A1058-A1062
73.Park, J. H.; Ko, J. M.; Park, O. O., Carbon Nanotube/RuO2 Nanocomposite Electrodes for Supercapacitors. Journal of the Electrochemical Society 2003, 150, (7), A864-A867
74.Kim, H.; Popov, B. N., Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors. Journal of the Electrochemical Society 2003, 150, (3), D56-D62.
75.Chen, Y.-S.; Hu, C.-C.; Wu, Y.-T., Capacitive and Textural Characteristics of Manganese Oxide Prepared by Anodic Deposition: Effects of Manganese Precursors and Oxide Thickness. Journal of Solid State Chemistry 2004, 8, 467-473.
76.Maltha, A.; Kist, H. F.; Brunet, B.; Ziolkowski, J.; Onishi, H.; Iwasawa, Y.; Ponec, V., The Active Sites of Manganese- and Cobalt-Containing Catalysts in the Selective Gas Phase Reduction of Nitrobenzene. Journal of Catalysis 1994, 149, (2), 356-363.
77.Wang, X.; Li, Y., Rational Synthesis of a-MnO2 Single-crystal Nanorods. Chemical Communication 2002, (7), 764-765.
78.Yamashita, T.; Vannice, A., NO Decomposition over Mn2O3and Mn3O4 Journal of Calatysis 1996, 163, (1), 158-168.
79.Hill, L. I.; Verbaere, A.; Guyomard, D., Nanofibrous a-, b-, g- and a•g-Manganese Dioxides Prepared by the Hydrothermal-Electrochemical Technique I. Synthesis and Characterization. Journal of the Electrochemical Society 2003, 150, (8), D135-D148
80.Sánchez, L.; Pereira-Ramos, J.-P., Electrochemical Properties of a New Non-stoichiometric Spinel Oxide (Mn2.5O4) as Li Insertion Compound. Electrochimica Acta 1997, 42, (4), 531-535.
81.Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M., Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices. Nature 2001, 409, (04), 66-69.
82.Morales, A. M.; Lieber, C. M., A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires Science 1998, 279, (9), 208-211.
83.Liang, Z.; Ausha, A. S.; Yu, A.; Canso, F., Nanotubes Prepared by Layer-by-Layer Coating of Porous Membrane Templates. Advanced Materials 2003, 15, (21), 1849-1853.
84.Tenne, R.; Margulis, L.; Genut, M.; Hodes, G., Polyhedral and Cylindrical Structures of Tungsten Disulphide. Nature 1992, 360, (3), 444-446.
85.Vayssieres, L., Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials 2003, 15, (5), 464-466.
86.Yao, B.; Fleming, D.; Morris, M. A.; Lawrence, S. E., Structural Control of Mesoporous Silica Nanowire Arrays in Porous Alumina Membranes Chemistry of Materials 2004, 16, (24), 4851-4855.
87.Liu, Z.; Bando, Y., A Novel Method for Preparing Copper Nanorods and Nanowires. Advanced Materials 2003, 15, (4), 303-305.
88.Nordlinder, S.; Augustsson, A.; Schmitt, h.; Guo, J.; Duda, L. C.; Nordgren, J.; Gustafsson, T. r.; Edstro¨m, K., Redox Behavior of Vanadium Oxide Nanotubes As Studied by X-ray Photoelectron Spectroscopy and Soft X-ray Absorption Spectroscopy. Chemistry of Materials 2003, 15, (16), 3227-3232.
89.Bai, A.; Hu, C.-C., Iron–Cobalt and Iron–Cobalt–Nickel Nanowires Deposited by Means of Cyclic Voltammetry and Pulse-Reverse Electroplating. Electrochemistry Communication 2003, 5, (1), 78-82.
90.Oepen, H. P.; Kirschner, J., Nanomagnetic Structures at Surfaces. Current Opinion in Solid State and Materials Science 1999, 4, (2), 217-221.
91.Pinna, N.; Wild, U.; Urban, J.; Schlögl, B., Divanadium Pentoxide Nanorods. Advanced Materials 2003, 15, (4), 329-331.
92.Prasad, K. R.; Miura, N., Potentiodynamically Deposited Nanostructured Manganese Dioxide as Electrode Material for Electrochemical Redox Supercapacitors. Journal of Power Sources 2004, 135, (1-2), 354-360.
93.Zhou, Y.; Wang, S. H. Y. X. P. C. C. Y.; Chen, Z. Y., Formation of Silver Nanowires by a Novel Solid-Liquid Phase Arc Discharge Method Chemistry of Materials 1999, 11, (3), 545-546.
94.Bhattacharrya, S.; Saha, S. K.; Chakravorty, D., Nanowire Formation in a Polymeric Film. Applied Physics Letters 2000, 76, (26), 3896-3898.
95.Wu, Y.; Yang, P., Germanium Nanowire Growth via Simple Vapor Transport. Chemistry of Materials 2000, 12, (12), 605-607.
96.Soulantica, K.; Maisonnat, A.; Senocq, F.; Fromen, M.-C.; Casanove, M.-J.; Chaudret, B., Selective Synthesis of Novel In and In3Sn Nanowires by an Organometallic Route at Room Temperature Angewandte Chemie International Edition 2001, 40, (16), 2984-2986.
97.Zhou, Y.; Li, H., Sol–Gel Template Synthesis of Highly Ordered LiCo0.5Mn0.5O2 Nanowire Arrays and Their Structural Properties. Journal of Solid State Chemistry 2002, 165, (2), 247-253.
98.Kros, A.; Nolte, R. J. M.; Sommerdijk, N. A. J. M., Conducting Polymers with Confined Dimensions: Track-Etch Membranes for Amperometric Biosensor Applications. Advanced Materials 2002, 14, (23), 1779-1782.
99.Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angewandte Chemie International Edition 1999, 38, (1-2), 56-77.
100.Bai, A.; Hu, C.-C., Cyclic Voltammetric Deposition of Nanostructured Iron-Group Alloys in High-Aspect Ratios without Using Templates. Electrochemistry Communication 2003, 5, (8), 619-624.
101.Li, Y.; Wang, J.; Deng, Z.; Wu, Y.; Sun, X.; Yu, D.; Yang, P., Bismuth Nanotubes: A Rational Low-Temperature Synthetic Route Journal of the American Chemical Society 2001, 123, (40), 9904-9905.
102.Yuan, Z.-Y.; Zhang, Z.; Du, G.; Ren, T.-Z.; Su, B.-L., A Simple Method to Synthesise Single-crystalline M anganese Oxide Nanowires. Chemical Physics Letters 2003, 378, (3-4), 349-353.
103.Tsay, P.; Hu, C.-C., Non-Anomalous Codeposition of Iron-Nickel Alloys Using Pulse-Reverse Electroplating Through Means of Experimental Strategies. Journal of the Electrochemical Society 2002, 149, (10), C492-C497.
104.Jarosch, D., Crystal-Structure Refinement and Reflectance Measurements of Hausmannite, Mn3O4. Mineralogy and Petrology 1987, 37, (1), 15-23.
105.Glasser, L. S. D.; Ingram, L., Refinement of Crystal Structure of Groutite Alpha-MnOOH. Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry B 1968, 24, (9), 1233-1236.
106.Ocaña, M., Uniform Particles of Manganese Compounds Obtained by Forced Hydrolysis of Manganese(II) Acetate. Colloid & Polymer Science 2000, 278, 443-449.
107.Kohler, T.; Armbruster, T.; Libowitzky, E., Hydrogen Bonding and Jahn–Teller Distortion in Groutite,?MnOOH, and Manganite,γ-MnOOH, and Their Relations to the Manganese Dioxides Ramsdellite and Pyrolusite. Journal of Solid State Chemistry 1997, 133, (2), 486-500.
108.Wu, Y.-T.; Hu, C.-C., Effects of Electrochemical Activation and Multiwall Carbon Nanotubes on the Capacitive Characteristics of Thick MnO2 Deposits. Journal of the Electrochemical Society 2004, 151, (12), A2060-A2066.
109.Raja, R.; Thomas, J. M., A Manganese-Containing Molecular Sieve Catalyst Designed for The Terminal Oxidation of Dodecane in Air. In 1998; pp 1841-1842.
110.Yang, Z.; Zhang, Y.; Zhang, W.; Wang, X.; Qian, Y.; Wen, X.; Yang, S., Nanorods of Manganese Oxides: Synthesis, Characterization and Catalytic Application. Jouranl of Solid State Chemistry 2006, 179, (3), 679-684.
111.Shen, X.; Ding, Y.; Liu, J.; Laubernds, K.; Zerger, R. P.; Polverejan, M.; Son, Y.-C.; Aindow, M.; Suib, S. L., Synthesis, Characterization, and Catalytic Applications of Manganese Oxide Octahedral Molecular Sieve (OMS) Nanowires with a 2 × 3 Tunnel Structure Chemisry of Materials 2004, 16, (25), 5327-5335.
112.Du, J.; Gao, Y.; Chai, L.; Zou, G.; Li, Y.; Qian, Y., Hausmannite Mn3O4 Nanorods: Synthesis, Characterization and Magnetic Properties. Nanotechnology 2006, 17 (19), 4923-4928
113.Seo, W. S.; Jo, H. H.; Lee, K.; Kim, B.; Oh, S. J.; Park, J. T., Size-Dependent Magnetic Properties of Colloidal Mn3O4 and MnO Nanoparticles Angewandte Chemie International Edition 2004, 43, (9), 1115-1117.
114.Vázquez-Olmos, A.; Redón, R.; Rodríguez-Gattorno, G.; Mata-Zamora, M. E.; Morales-Leal, F.; Fernández-Osorio, A. L.; Saniger, J. M., One-Step Synthesis of Mn3O4 Nanoparticles: Structural and Magnetic Study. Jouranl of Colloid and Interface Science 2005, 291, (1), 175-180.
115.Lei, S.; Tang, K.; Fang, Z.; Zheng, H., Ultrasonic-Assisted Synthesis of Colloidal Mn3O4 Nanoparticles at Normal Temperature and Pressure 2006, 6, (8), 1757-1760.
116.Chan, W. N.; Doo, S. H.; Dae, S. K.; Jeunghee, P.; Yoon Tae, J.; Gangho, L.; Myung-Hwa, J., Ferromagnetism of MnO and Mn3O4 Nanowires. Applied Physics Letters 2005, 87, (14), 142504.
117.Yang, L.-X.; Zhu, Y.-J.; Tong, H.; Wang, W.-W.; Cheng, G.-F., Low Temperature Synthesis of Mn3O4 Polyhedral Nanocrystals and Magnetic study. Jouranl of Solid State Chemistry 2006, 179, (4), 1225-1229.
118.Lee, G. H.; Huh, S. H.; Jeong, J. W.; Choi, B. J.; Kim, S. H.; Ri, H.-C., Anomalous Magnetic Properties of MnO Nanoclusters. Jouranl of the American Chemical Society 2002, 124, (41), 12094-12095.
119.Wang, L. Z.; Takada, K.; Kajiyama, A.; Onoda, M.; Michiue, Y.; Zhang, L. Q.; Watanabe, M.; Sasaki, T., Synthesis of a Li-Mn-oxide with Disordered Layer Stacking through Flocculation of Exfoliated MnO2 Nanosheets, and Its Electrochemical Properties Chemisry of Materials 2003, 15, (23), 4508-4514.
120.Luo, J.-Y.; Zhang, J.-J.; Xia, Y.-Y., Highly Electrochemical Reaction of Lithium in the Ordered Mesoporosus b-MnO2 Chemisry of Materials 2006, 18, (23), 5618-5623.
121.Sabatier, P.; Mailhe, A., The Use of Manganese Oxide for the Catalyst of Acids: Preparation of Fatty Acetones and Arylics. In 1914; Vol. 158, pp 830-835.
122.Kaplan, D. J.; Himmelblau, D. M.; Kanaoka, C., Oxidation of Sulfur-Dioxide in Aqueous Ammonium-Sulfate Aerosols Containing Manganese as a Catalyst. In 1981; Vol. 15, pp 763-773.
123.Kagan, M. J.; Lubarsky, G. D., The Intermediate Stages of Aldehyde Oxidation. I The Catalytic Action of Manganese Catalyst in the Various Stages of the Process of Acetaldehyde Oxidation. In 1935; Vol. 39, pp 837-846.
124.Jensen, K. B.; Massoth, F. E., Studies on Iron-Manganese Oxide Carbon-Monoxide Catalysts.1. Structure of Reduced Catalyst. In 1985; Vol. 92, pp 98-108.
125.Hu, C.-C.; Chuang, P.-Y.; Wu, Y.-T., Tafel and Electron Paramagnetic Resonance Studies of the Anodic Deposition of Hydrous Manganese Oxides with the Presence of Acetate Ions. Journal of the Electrochemical Society 2005, 152, (11), C723-C729.
126.Nama, K.-W.; Kima, K.-B., Manganese Oxide Film Electrodes Prepared by Electrostatic Spray Deposition for Electrochemical Capacitors. Journal of the Electrochemical Society 2006, 153, (1), A81-A88.
127.Wu, Y.-T.; Hu, C.-C., Aspect Ration Controlled Growth of MnOOH in Mixture of Mn3O4 and MnOOH Sinle Crystals for Supercapacitors. Electrochemical and Solid-State Letters 2005, 8, (5), A240-A244.
128.Lamaita, L.; Peluso, M. A. s.; Sambeth, J. E.; Thomas, H.; Mineli, G.; Porta, P., A theoretical and Experimental Study of Manganese Oxides Used as Catalysts for VOCs Emission Reduction. Catalysis Today 2005, 107-108, 133-138.
129.Sun, X.; Ma, C.; Wang, Y.; Li, H., Preparation and Characterzation of MnOOH and b-MnO2 whiskers. Inorganic Chemistry Communication 2002, 5, (10), 747-750.
130.Ahmad, T.; Ramanujachary, K. V.; Lofland, S. E.; Ganguli, A. K., Nanorods of Manganese Oxalate: A Single Source Precursor to Different Manganese Oxide Nanoparticles (MnO, Mn2O3, Mn3O4). Journal of Materials Chemistry 2004, 14, (23), 3406 - 3410.
131.Dong, X.; Zhang, X.; Liu, B.; Wang, H.; Li, Y.; Huang, Y.; Du, Z., Controlled Synthesis of Manganese Oxohydrioxide(MnOOH) and Mn3O4 Nanorod Using Novel Reverse Micelles. Journal of Nanoscience and Nanotechnology 2006, 6, (3), 818-822.
132.Xu, H. Y.; Xu, S. L.; Li, X. D.; Wang, H.; Yan, H., Chemical Bath Deposition of Hausmannite Mn3O4 Thin Films. Applied Surface Science 2005, 252, (12), 4091-4096.
133.Xu, H.; Xu, S.; Wang, H.; Yan, H., Characterization of Hausmannite Mn3O4 Thin Films by Chemical Bath Deposition. Journal of the Electrochemical Society 2005, 152, (12), C803-C807.
134.Wang, X.; Wang, X.; Huang, W.; Sebastian, P. J.; Gamboa, S., Sol–Gel Template Synthesis of Highly Ordered MnO2 Nanowire Arrays. Journal of Power Sources 2005, 140, (1), 211-215.
135.Raymundo-Pinero, E.; Khomenko, V.; Frackowiak, E.; Be´guina, d. F., Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors. Journal of the Electrochemical Society 2005, 152, (1), A229-A235.
136.Chou, S.; Cheng, F.; Chen, Electrodeposition Synthesis and Electrochemical Properties of Nanostructured g-MnO2 Films. Jouranl of Power Sources 2006, 162, (1), 727-734.
137.Kuo, S.-L.; Wu, N.-L., Investigation of Pseudocapacitive Charge-Storage Reaction of MnO2•nH2O Supercapacitors in Aqueous Electrolytes Journal of the Electrochemical Society 2006, 153, (7), A1317-A1324.
138.Chen, X.; Li, X.; Jiang, Y.; Shi, C.; Li, X., Rational Synthesis Of a-Mno2 and g-Mn2O3 Nanowires with The Electrochemical Characterization Of a-MnO2 Nanowires for Supercapacitor. Solid State Communications 2005, 136, (2), 94-96.
139.Subramanian, V.; Zhu, H.; Wei, B., Nanostructured MnO2: Hydrothermal Synthesis and Electrochemical Properties as A Supercapacitor Electrode Material. Jouranl of Power Sources 2006, 159, (1), 361-364.
140.Devaraj, S.; Munichandraiah, N., Electrochemical Supercapacitor Studies of Nanostructured a-MnO2 Synthesized by Microemulsion Method and the Effect of Annealing Journal of the Electrochemical Society 2007, 154, (2), A80–A88.
141.Chang, J.-K.; Tsai, W.-T., Microstructure and Pseudocapacitive Performance of Anodically Deposited Manganese Oxide with Various Heat-Treatments Journal of the Electrochemical Society 2005, 152, (10), A2063–A2068.
142.Bernard, M.-C.; Goff, A. H.-L.; Thi, B. V.; Torresi, S. C. d., Electrochemical Rection in Manganese Oxides I. Raman Analysis. Journal of the Electrochemical Society 1993, 140, (11), 3065-3070.
143.Buciuman, F.; Patcas, F.; Craciun, R.; Zahn, D. R. T., Vibrational Spectroscopy of Bulk and sSupported Manganese Oxides. Physical Chemistry Chemical Physics 1990, 1, (1), 185-190.
144.Kapteijn, F.; Vanlangeveld, A. D.; Moulijn, J. A.; Andreini, A.; Vuurman, M. A.; Turek, A. M.; Jehng, J. M.; Wachs, I. E., Alumina-Supported Manganese Oxide Catalysts : I. Characterization: Effect of Precursor and Loading. Journal of Calatysis 1994, 150, (1), 94-104.
145.Chen, Z. W.; Lai, J. K. L.; Shek, C. H., Nucleation Site and Mechamism Leading to Growth of Bulk-Quantity Mn3O4 Nanorod. Applied Physics Letters 2005, 86, (18), 181911.
146.Gouadec, G.; Colomban, P., Raman Spectroscopy of Nanomaterials: How Spectra Relate to Disorder, Particle Size and Mechanical Properties. Progress in Crystal Growth and Characterization of Materials 2007, 53, (1), 1-56.
147.Dai, Y.; Wang, K.; Xie, J., From Spinel Mn3O4 to Layered Nanoarchitectures Using Electrochemical Cycling and the Distinctive Pseudocapacitive behavior. Applied Physics Letters 2007, 90, (10), 104102.
148.Zuo, J.; Xu, C.; Liu, Y.; Qian, Y., Crystallite Size Effects on the Raman Spectra of Mn3O4. Nanostructured Materials 1998, 10, (8), 1331-1335.
149.Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H., Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Proper. Science 1999, 283, (5041), 512-514.
150.Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M., Direct Synthesis of Long Single-Walled Carbon Nanotube Strands. Science 2002, 296, (5569), 884-886.
151.Ph. Mauron; Emmenegger, C.; Züttel, A.; Nützenadel, C.; Sudan, P.; Schlapbach, L., Synthesis of Oriented Nanotube Films by Chemical Vapor Deposition Carbon 2002, 40, (8), 1339-1344.
152.Dai, Z. R.; Pan, Z. W.; Wang, Z. L., Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation. Advanced Functional Materials 2003, 13, (1), 9-24.
153.Che, G.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R.; Ruoff, R. S., Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method. Chemisry of Materials 1998, 10, (1), 260-267.
154.Chalamala, B. R.; Reuss, R. H.; Dean, K. A.; Sosa, E.; Golden, D. E., Field Emission Characteristics of Iridium Oxide Tips. Journal of Applied Physics 2002, 91, (9), 6141-6146.
155.Dong, L.; Jiao, J.; Tuggle, D. W.; Petty, J. M., ZnO Nanowires Formed on Tungsten Substrates and Their Electron Field Emission Properties. Applied Physics Letters 2003, 87, (7), 1906-1908.
156.Jia, H. B.; Zhang, Y.; Chen, X. H.; Shu, J.; Luo, X. H.; Zhang, Z. S.; Yu, D. P., Efficient Field Emission from Single Crystalline Indium Oxide Pyramids. Applied Physics Letters 2003, 82, (23), 4146-4148.
157.Zhu, Y. W.; Yu, T.; Cheong, F. C.; Xu, X. J.; Lim, C. T.; Tan, V. B. C.; Thong, J. T. L.; Sow, C. H., Large-Scale Synthesis and Field Emission Properties of Vertically Oriented CuO Nanowire Films. Nanotechnology 2005, 16, (1), 88-92.
158.Deshpande, A. C.; Koinkar, P. M.; Ashtaputre, S. S.; More, M. A.; Gosavi, S. W.; Godbole, P. D.; Joag, D. S.; Kulkarni, S. K., Field Emission from Oriented Tin Oxide Rods. Thin Solid Films 2006, 515, (4), 1450-1454.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top