跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/21 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈瑮卿
研究生(外文):Li-ching Shen
論文名稱:1.含血質蛋白質對蛋胺酸、硒代蛋胺酸和半胱胺酸的氧化還原調控2.偵測DNA無嘌呤部位之金奈米探針的合成3.Oxanine與蔓皏?amp;#32957;交聯產物的鑑定
論文名稱(外文):1.Redox regulation of methionine, selenomethionine and cysteine mediated by hemoprotein2.Synthesis of probes for detecting apurinic sites in DNA3.Characterization of oxanine-glutathione cross-linked products
指導教授:陳皓君
指導教授(外文):Hauh-Jyun Candy Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:95
語文別:中文
論文頁數:169
中文關鍵詞:蛋胺酸
外文關鍵詞:OxanineMethionine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:447
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
I.
含有氧、硫和硒的生物分子是氧化還原主要的對象。在本研究中,在蛋胺酸和硒代蛋胺酸的N端進行9-fluorenylmethyloxycarbonyl (Fmoc)的衍生化並以N-乙醯基半胱胺酸當成標準品來觀察氧化還原的調控反應。體內氧化劑過氧化氫和次氯酸皆可將蛋胺酸氧化成蛋胺酸亞碸和硒代蛋胺酸氧化成硒代蛋胺酸亞碸,而N-乙醯基半胱胺酸則會被氧化成N-乙醯基胱胺酸。另外,次氯酸和亞硝酸反應所生成的硝基氯可將蛋胺酸亞碸進一步氧化成蛋胺酸碸,硒代蛋胺酸亞碸則可完全氧化成硒代蛋胺酸亞碸,而N-乙醯基半胱胺酸則會被氧化成N-乙醯基半胱胺磺酸和 S,S-二硝基-N-乙醯基胱胺磺酸,所以硝基氯被認為是強氧化劑。我們也發現在過氧化氫與含血質蛋白質或化合物存在下,蛋胺酸、硒代蛋胺酸和半胱胺酸也可以被氧化。以含血質蛋白質或化合物搭配還原劑對蛋胺酸亞碸和硒代蛋胺酸亞碸會有不同程度的還原能力,但是蛋胺酸碸在同樣還原系統下完全無法被還原。硒代蛋胺酸亞碸則可以被含硫醇基的還原劑以及含血質蛋白質或血晶質單獨還原。因此我們可以知道血質蛋白質或化合物可以調控蛋胺酸和硒代蛋胺酸的氧化還原反應。硒代蛋胺酸比蛋胺酸更容易進行氧化還原,藉由蛋白質中的蛋胺酸直接取代硒代蛋胺酸,應該可以在體內提供一很好的抗氧化的機制。
II.
在慢性感染及發炎時,活化的巨噬細胞及嗜中性白血球製造過多的超氧負離子與一氧化氮,超氧負離子與一氧化氮會快速形成過氧化亞硝酸根。過氧化亞硝酸根是具反應性含氮氧物種會攻擊DNA上的鳥糞嘌呤,並生成8-硝基鳥糞嘌呤,此硝化鹼基與去氧核醣的鍵並不穩定易掉落並形成開環結構的醛基,並在DNA上形成具突變的無嘌呤位置,導致DNA上核苷酸的錯誤配對以及DNA上雙股間氫鍵鍵結力的減少,進而導致雙股的分離,造成高度的毒性與突變性。開環結構的醛基會與胺基 (R-NH2)、聯胺 (R-NHNH2)、胺氧基 (R-ONH2) 分別形成imine、hydrazone、oxime ether的產物。貴重金屬在奈米級時,具有一強吸收波帶,隨著奈米金屬表面環境折射率的改變而具有光學特性,如:吸收度或吸收波長,稱為表面電漿共振。因此我們將利用金奈米粒子修飾上一段含胺氧基的化合物,做為生物感測器偵測DNA上無嘌呤位置之醛基的探針,並以表面電漿共振方法分析。本研究主要合成了兩個末端含胺氧基的探針,來偵測DNA上無嘌呤位置之醛基。
III.
在慢性發炎疾病和癌症所產生的具反應性含氮氧物種,包括:一氧化氮、亞硝酸和N-nitrosoindoles會攻擊DNA上的鳥糞嘌呤形成Oxanine。2000年Suzuki等人將DNA鍵結上蛋白質和細胞萃取物,並以凝膠電泳分析發現Oxanine會造成蛋白質和DNA交聯反應,同時2′-deoxyoxanosine也被證實可以和甘胺酸的N端反應形成開環加成產物,但對於oxanine所造成蛋白質和DNA交聯反應產物之構造仍然還未被鑑定。雖然DNA上所生成的oxanine可以鹼基切除修復或核苷酸切除系統來修復,但對於oxanine造成的蛋白質和DNA交聯反應的修復機制目前還不知道。過去我們實驗室研究發現oxanine和N-乙醯基胺基酸反應中以oxanine與N-乙醯基半胱胺酸的反應性最佳。在本研究中,我們利用HPLC/UV、ESI-MS和NMR鑑定了oxanine和內生性蔓皏?amp;#32957;與氧化態蔓皏?amp;#32957;反應產生的硫醇酯產物Oxa-S-GSH和醯基產物Oxa-N-GSH、Oxa-N-GSSG的結構。
I.
Biomolecules containing oxygen, sulfur and selenium are subjected to oxidation-reduction reactions. In this study, redox regulation of methionine and selenomethionine is investigated using 9-fluorenylmethyloxycarbonyl (Fmoc) derivatives, while that for cysteine is investigated using N-acetylcysteine. In the presence of the biological oxidants H2O2 or hypochlorous acid, methionine (Met) and selenomethionine (SeMet) were converted to the corresponding sulfoxides and cysteine (Cys) was dimerized to cystine. In the presence of nitryl chloride (NO2Cl) generated by reaction of hypochlorous acid (HOCl) with nitrite (NO), methionine sulfone (Met(=O)2) was formed in addition to methionine sulfoxide (Met(=O)) and oxidation of selenomethionine led to the formation of methionine selenoxide (MetSe=O), suggesting that NO2Cl is a strong oxidizing agent. We also discovered that cysteine would be oxidized to cysteine sulfonate (Cys-SO3H) and S,S-dinitrosocystine in the presence of NO2Cl. We found that hemoproteins and metal-containing cofactors hemin and cyanocobalamin mediated oxidation of methionine, selenomethionine and cysteine when they were incubated with H2O2. In combination with reducing agents, certain hemoproteins and hemin also catalyzed reduction of methionine sulfoxide to various extents. Furthermore, methionine sulfone cannot be reduced by these systems. Methionine selenoxide can be reduced efficiently by thiol-containing reducing agents and hemoprotein alone.The results suggest that redox reactions of methionine and selenomethionine can be regulated by hemoprotein. Since selenomethionine is an amino acid occurring in proteins replacing methionine, preferential oxidation of selenomethionine and reduction of methionine selenoxide residues over methionine and methionine sulfoxide residues in proteins might provide a possible protective mechanism against biological oxidants.
II
Apurinic (AP) sites are important DNA repair intermediates in mutagenesis and carcinogenesis. Activated macrophage and neutrophils cell generate superoxide and nitrogen oxide to produce reactive nitrogen oxide species (RNOS) peroxynitrite during inflammination and chronic infection. Guanine is likely to be major targent for reaction with peroxynitrite within DNA and form the 8-nitroguanine. Furthermore, it can develop to apurinic site DNA by hydrolysis of the N-glycosidic bond. The lesion is highly mutagenic and toxicity because of the DNA base mismatch and double helix separate induce by weakening hydrogen bond. Based on the specific reaction of the amionoxy group and the aldehyde moiety of the open ring deoxyribose of DNA apurinic sites, a stable oxime ether is formes. We have described the method to detect DNA apurinic sites by localized surface plasma resonance (LSPR). By using a nano-probe synthesized with an aminoxy group on one end and thiol group on the other. The thiol is attached to gold nanoparticles. When it reacts with the aldehydic group of DNA apurinic sites, formation of the oxime ether should lead to LSPR signaling. In this study two probes are synthesized with an aminoxy group at one end to react with the apurinic sites of DNA. The other end of the probes are carboxylic acids for coupling with the amino groups of the spacer on the gold nanoparticles.
III.
Reactive nitrogen species (RNS) are implicated in inflammatory diseases and cancers. Oxanine (Oxa) is a DNA lesion derived from the guanine base with the inflammatory mediator nitric oxide (NO), nitrous acid (HNO2) or N-nitrosoindoles. It was shown by gel electrophoresis showed that oxanine mediated DNA-protein cross-links formation with DNA-binding proteins and cell extract. While 2′-deoxyoxanosine (dOxo) was shown to react with amines including the N-terminal amino group of glycine, the structures of DNA-protein cross-links induced by oxanine have not been characterized. Although oxanine on DNA can be repaired by base and nucleotide excision repair pathways, repair of Oxa-derived DNA-protein cross-links is not understood. Our laboratory had found that N?acetylcysteine is the most reactive in reaction of oxanine with N?acetylated ?amino acids. In this study, we characterized reaction products of oxaine with the endogenous tripeptide glutathione (GSH) and the disulfide GSSG as the thioester and the amide adducts with HPLC/UV, electrospray ionization mass, 1H and 13C-NMR spectra.
目錄 I
圖表目錄 VI
附圖目錄 VIII

第一部份 含血質蛋白質對蛋胺酸、硒代蛋胺酸和半胱胺酸的氧化還原調控

英文摘要 1
中文摘要 3
1-1 序論 4
1-1-1. 氧化壓力或硝化壓力造成蛋白質的修飾 7
1-1-2. 具反應性含氧物種 8
1-1-3. 具反應性含氮氧物種 10
1-1-4. 蛋胺酸的氧化修飾 10
1-1-5. 硒代蛋胺酸在蛋白質中的特性 11
1-1-6. 蛋白質中硫醇基的氧化或硝化修飾 12
1-1-7. 含血質蛋白質或化合物搭配還原劑對還原能力的影響 15
1-2. 實驗部分 18
1-2-1. 儀器 18
1-2-2. 藥品與材料 18
1-2-3. 高效能液相層析儀的分析條件 19
1-2-4. 實驗步驟 21
1-2-4-1. Fmoc-selenomethionine (Fmoc-SeMet)的衍生與 Fmoc-methionine
sulfoxide (Fmoc-Met(=O))、Fmoc-methionine soulfone (Fmoc-Met(=O)2)
Fmoc-methionine selenoxide (Fmoc-Se(=O)Met)的產物純化 21
1-2-4-2. Fmoc-methionine及Fmoc-selenomethionine之氧化反應 21
1-2-4-3. Fmoc-methionine sulfoxide及Fmoc-methionine sulfone之還原反應 22
1-2-4-4. Fmoc-methionine selenoxide之還原反應 22
1-2-4-5. Fmoc-methionine selenoxide和含血質蛋白質之還原反應 23
1-2-4-6. 以紫外光-可見光光譜儀偵測血紅素與methionine selenoxide (Se(=O)Met)及過氧化氫之反應 23
1-2-4-7. N-acetyl cysteine之氧化反應 23
1-3. 實驗結果與討論 25
1-3-1. Selenomethionine, methionine sulfoxide, methionine sulfone及methionine selenoxide的Fmoc衍生反應 25
1-3-2. Fmoc-methionine和Fmoc-seleno methionine的氧化反應 26
1-3-3. N-acetylcysteine的氧化反應 28
1-3-4. Fmoc-methionine sulfoxide及Fmoc-methionine sulfone之還原反應 29
1-3-5. Fmoc-methionine selenoxide還原反應 33
1-3-6. 含血質蛋白質或化合物與methionine selenoxide的還原反應 34
1-3-7. 以UV-vis偵測血紅素分別與methionine selenoxide和過氧化氫的反應 35
1-4. 結論 36

第二部份 偵測DNA無嘌呤部位之金奈米探針的合成

英文摘要 41
中文摘要 42
2-1. 序論 43
2-1-1. 8-硝基鳥糞嘌呤的生成 43
2-1-2. DNA上無嘌呤位置的形成 43
2-1-3. 表面電漿共振 45
2-1-4. 研究動機 45
2-1-5. 反應機制 49
2-2. 實驗部分 51
2-2-1. 儀器 51
2-2-2. 藥品與材料 51
2-2-3. 實驗步驟 52
2-2-3-1. 化合物1的合成 52
2-2-3-2. 化合物2的合成 53
2-2-3-3. 化合物3的合成 53
2-2-3-4. 化合物4的合成 53
2-2-3-5. 化合物5,6的合成 54
2-2-3-6. 化合物7,8的合成 54
2-2-3-7. 寡去氧核醣核苷酸的無嘌呤部位合成 54
2-2-3-8. 氫核磁共振光譜 55
2-3. 實驗結果與討論 56
2-3-1. 化合物1 56
2-3-2. 化合物2 57
2-3-3. 化合物3 58
2-3-4. 化合物4 59
2-3-5. 化合物5 60
2-3-6. 化合物7 61
2-3-8. 化合物8 62
2-3-9. 表面電漿共振法偵測無嘌呤位置DNA 63
2-4. 結論 64

第三部份 Oxanine與蔓皏?amp;#32957;交聯產物的鑑定

英文摘要 65
中文摘要 66
3-1. 序論 67
3-2 實驗部分 71
3-2-1. 儀器 71
3-2-2. 藥品與材料 71
3-2-3. 高效能液相層析儀的分析條件 72
3-2-4. 實驗步驟 73
3-2-4-1. 2’-deoxyoxanine (dOxo)的合成 73
3-2-4-2. dOxo-S-GSH、dOxo-S-NAc-Cys的合成 73
3-2-4-3. 2’-deoxyoxanine酸水解 75
3-2-4-4. Oxa-S-NAc-Cys、Oxa-S-GSH、Oxa-N-GSSG、Oxa-N-GSH的合成 75
3-2-4-5. 氫核磁共振光譜 79
3-2-4-6. dOxo-S-GSH、dOxo-N-GSSG的半衰期反應 79

3-3 結果與討論 80
3-3-1. 以NMR鑑定Oxa-S-GSH、Oxa-N-GSSG、Oxa-N-GSH的結構 80
3-3-2. 以電噴灑游離串聯質譜儀鑑定Oxa-S-GSH、Oxa-N-GSSG以及Oxa-N-GSH結構 83
3-3-3. dOxo-S-GSH與dOxo-N-GSSG的半衰期反應 85

3-4 結論 86
參考文獻 130
中英對照表 146

圖表目錄
第一部份 含血質蛋白質對蛋胺酸、硒代蛋胺酸和半胱胺酸的氧化還原調控

圖1-1. 蛋白質中半胱胺酸、硒代半胱胺酸、蛋胺酸和硒代蛋胺酸常見的氧化修飾 5
圖1-2. 還原劑的化學結構式 16
圖1-3. 含血質蛋白質搭配還原劑的還原機制 17
表1-1. 具反應性含氧物種和具反應性含氮氧物種 8
表1-2. 不同的氧化劑或過氧化氫 搭配hemoproteins、Vit B12及hemin對Fmoc-Met和Fmoc-SeMet的氧化反應 27
表1-3. NAC不同氧化劑或過氧化氫搭配hemoproteins、Vit. B12及hemin對的氧化反應 29
表1-4. hemoproteins、Vit. B12及hemin搭配不同還原劑對Fmoc-Met(=O)和Fmoc-Met(=O)2的還原反應 31
表1-5. 含血質蛋白質或化合物及還原劑的還原電位 32
表1-6. Fmoc-Se(=O)Met與不同還原劑還原反應的IC50 (mM) 33
表1-7. hemoproteins以及hemin對Fmoc-Se(=O)Met的還原反應 34
表1-8. 不同濃度的hemoglobin與catalase對Fmoc-Se(=O)Met的還原反應 35

第二部份 偵測DNA無嘌呤部位之金奈米探針的合成

圖 2-1. DNA上的鳥糞嘌呤經過氧化亞硝酸根硝化反應後形成無嘌呤位置DNA 44
圖 2-2. 去氧核醣核酸之醛基與胺基、聯胺與胺氧基之反應 45
圖 2-3. 含胺氧基探針之probe 1合成流程圖 46
圖 2-4. 含胺氧基探針之probe 2合成流程圖 47
圖 2-5. 金奈米粒子修飾上spacer接合上probe 1後偵測無嘌呤位置DNA之示 48
圖 2-6. probe 2以硫金鍵鍵結在金奈米粒子上後偵測無嘌呤位置DNA之示意圖 49
圖 2-7. R-NH2被Boc保護之反應機制 49
圖 2-8. R-NH2與R-COOH反應形成醯胺鍵之反應機制 50

第三部份 Oxanine與蔓皏?amp;#32957;交聯產物的鑑定

圖 3-1. 鳥糞嘌呤遭受一氧化氮或亞硝酸形成oxanine 67
圖 3-2. 含oxanine的DNA與histone的交聯反應之凝膠電泳 67
圖 3-3. N-乙醯基胺基酸及其側鏈pKa 68
圖3-4. Oxanine和蔓皏?amp;#32957;或氧化態蔓皏?amp;#32957;的反應產物 69
圖3-5. dO-S-GSH與dO-N-GSSG的半衰期反應 85
表3-1. GSH、Oxa-S-NAC、dO-S-NAC、dO-S-GSH以及Oxa-S-GSH之1H NMR
化學位移 80
3-2. Oxa-S-GSH. Oxa-N-GSSG以及Oxa-N-GSH之1H NMR化學位移 81
表3-3. dO-N-glycine、dO-S-GSH、Oxa-S-GSH以及Oxa-N-GSSG之13C NMR化學位移
82
表3-4. GSH、Oxa-S-GSH、Oxa-N-GSH 經CID碰撞後所生成之離子碎片 83
表3-5. GSSG、Oxa-N-GSSG 經CID碰撞後所生成之離子碎片 84
表3-6. dO-S-GSH與dO-N-GSSG的半衰期反應 85


附圖目錄
第一部份 含血質蛋白質對蛋胺酸、硒代蛋但胺酸和半胱胺酸的氧化還原調控
附圖1-1. Fmoc-SeMet之HPLC層析圖譜 37
附圖1-2. Fmoc-SeMet之ESI+質譜圖 37
附圖1-3. Fmoc-Met與NO2Cl (1/1)反應之HPLC層析圖譜 38
附圖1-4. Fmoc-Met(=O)和Fmoc-Met(=O)2之ESI-質譜圖 38
附圖1-5. Fmoc-SeMet與NO2Cl (1/1)反應之HPLC層析圖譜 39
附圖1-6. Fmoc-Se(=O)Met之ESI+質譜圖 39
附圖1-7. Hb、Hb/H2O2及Hb/Se(=O)Met之UV吸收圖譜 40
第二部份 偵測DNA無嘌呤部位之金奈米探針的合成

附圖2-1. 化合物1之ESI/MS圖譜 56
附圖2-2. 化合物1之1H NMR圖譜 56
附圖2-3. 化合物2之ESI/MS圖譜 57
附圖2-4. 化合物2之1H NMR圖譜 57
附圖2-5. 化合物3之ESI/MS圖譜 58
附圖2-6. 化合物3之1H NMR圖譜 58
附圖2-7. 化合物4之ESI/MS圖譜 59
附圖2-8. 化合物4之1H NMR圖譜 59
附圖2-9. 化合物5之ESI/MS圖譜 60
附圖2-10. 化合物5之1H NMR圖譜 60
附圖2-11. 化合物7之ESI/MS圖譜 61
附圖2-12. 化合物7之1H NMR圖譜 61
附圖2-13. 化合物8之ESI/MS圖譜 62
附圖2-14. 化合物8之1H NMR圖譜 62
附圖2-15. 以化合物2為探針偵測無嘌呤位置DNA的UV-vis吸收圖譜 63

第三部份 Oxanine與蔓皏?amp;#32957;交聯產物的鑑定

附圖3-1. dOxo之HPLC層析圖譜 88
附圖3-2. dOxo水解後之HPLC層析圖譜 88
附圖3-3. dOxo與N-乙醯基半胱胺酸反應之HPLC層析圖譜 89
附圖3-4. Oxanine與N-乙醯基半胱胺酸反應之HPLC層析圖譜 89
附圖3-5. dOxo與蔓皏?amp;#32957;反應之HPLC層析圖譜 90
附圖3-6. dOxo與氧化態蔓皏?amp;#32957;反應之HPLC層析圖譜 90
附圖3-7. dOxo-N-GSSG與反式-2,3-二羥基-1,4-二硫基丁烷反應之HPLC層析圖
91
附圖3-8. Oxanine和蔓皏?amp;#32957;反應之HPLC層析圖譜 91
附圖3-9. Oxanine和氧化態蔓皏?amp;#32957;反應之HPLC層析圖譜 92
附圖3-10. GSH之1H NMR圖譜 93
附圖3-11. dOxo-S-GSH之ESI-MS質譜圖,( 上附圖ESI- /下附圖ESI+ ) 94
附圖3-12. dOxo-S-GSH之1H NMR圖譜 (H2O decoupling) 95
附圖3-13A. dOxo-S-GSH之COSY圖譜 (H2O decoupling) 96
附圖3-13B. dOxo-S-GSH之COSY放大圖譜 (H2O decoupling) 97
附圖3-14. dOxo-S-GSH之DEPT圖譜 98
附圖3-15A. dOxo-S-GSH之HMQC圖譜(H2O decoupling) 99
附圖3-15B. dOxo-S-GSH之HMQC放大圖譜(H2O decoupling) 100
附圖3-16. dOxo-S-NAc-Cys之ESI-MS質譜圖(上附圖ESI- /下附圖ESI+ ) 101
附圖3-17. dOxo-S-NAc-Cys之1H NMR圖譜 102
附圖3-18. Oxa-S-NAc-Cys之ESI+質譜圖 103
附圖3-19. Oxa-S-NAc-Cys之1H-NMR圖譜 104
附圖3-20. Oxa-S-GSH之ESI-質譜圖 105
附圖3-21. Oxa-S-GSH之1H-NMR圖譜 106
附圖3-22. Oxa-S-GSH之13C-NMR圖譜 107
附圖3-23A. Oxa-S-GSH之COSY圖譜 108
附圖3-23B. Oxa-S-GSH之COSY放大圖譜 109
附圖3-24A. Oxa-S-GSH之HMQC圖譜 110
附圖3-24B. Oxa-S-GSH之HMQC放大圖譜 111
附圖3-25. Oxa-N-GSSG之ESI-MS質譜圖 (ESI+) 112
附圖3-26. Oxa-N-GSSG之1H NMR圖譜 113
附圖3-27. Oxa-N-GSSG之13C-NMR圖譜 114
附圖3-28A. Oxa-N-GSSG之COSY圖譜 115
附圖3-28B. Oxa-N-GSSG之COSY放大圖譜 116
附圖3-29A. Oxa-N-GSSG之HMQC圖譜 117
附圖3-29B. Oxa-N-GSSG之HMQC放大圖譜 118
附圖3-30. Oxa-N-GSH之ESI+質譜圖 119
附圖3-31. Oxa-N-GSH之1H NMR圖譜 120
附圖3-32. Oxa-N-GSH之13C NMR圖譜 121
附圖3-33A. Oxa-N-GSH之COSY圖譜 122
附圖3-33B. Oxa-N-GSH之COSY放大圖譜 123
附圖3-34A. Oxa-N-GSH之HMQC圖譜 124
附圖3-34B. Oxa-N-GSH之HMQC放大圖譜 125
附圖3-35. (a) Oxa-S-GSH, (b) Oxa-N-GSH, (c) GSH 之CID碰撞質譜圖 126
附圖3-36. (a) Oxa-N-GSSG 與(b) GSSG 之CID碰撞質譜圖 127
附圖 3-37. dO-N-GSSG在 37℃下(A)第四天的層析圖譜(B)與GSSG的共同注射 128
附圖3-38. dO-S-GSH在 37℃下第十五天的層析圖譜 129
1. H. Sies in Oxidative Stress (Ed.: H. Sies), Academic Press, London, UK, 1985, pp. 1-8
2. H. Sies, Angew. Chem. 1986, 98, 1061-1075; Angew. Chem. Int.Ed. Engl. 25: 1058-1071; 1986.
3. H. Sies in Encyclopedia of Stress, Vol III (Ed.: G. Fink), Academic Press, San Diego,2000, pp. 102-105
4. Chen, H. J.; Chang, C. M.; Chen, Y. M. Hemoprotein-mediated reduction of nitrated DNA bases in the presence of reducing agents. Free Radic. Biol. Med. 34: 254-268; 2003.
5. Jacob, C.; Giles, G. I.; Giles, N. M. ; Sies, H. Sulfur and selenium: the role of oxidation state in protein structure and function. Angew. Chem. Int. Ed. 42: 4742-4758; 2003.
6..Weissbach, H.; Etienne, F.; Hoshi, T.; Heinemann, S.H.; Lowther, W.T.;
Metthews, B.; John, G. St.; Nathan, C.; and Brot., N. Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch. Biochem. Biophys. 397: 172-178; 2002.
7. Khor, H.K., Fisher, M.T., Schöneich, C., Potential role of methionine sulfoxide in the inactivation of the Chaperone GroEL by hypochlorous acid ( HOCl ) and peroxynitrite ( ONOO-). The Journal of Biological Chemistry, 279: 19486-19493; 2004.
8. Schomburg, L.; Schweizer, U.; Holtmann, B.; FlohS, L. ; Sendtner,M.; KRhrle, J. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem. J. 370: 397- 402; 2003.
9. Hill, K. E. ; Zhou, J.; McMahan, W. J.; Motley, A. K. ; Atkins, J. F.; Gesteland, R. F.; Burk, R. F. Deletion of Selenoprotein P Alters Distribution of Selenium in the Mouse. J. Biol. Chem. 278: 13640-13646; 2003.
10. Thanbichler, M.; Brck, A. Selenoprotein biosynthesis: purification and assay of components involved in selenocysteine biosynthesis and insertion in Escherichia coli. Methods Enzymol. 347: 3-16; 2002.
11. Assmann, A.; Bonifacic, M.; Briviba, K.; Sies, H.; Asmus, D. One-electron reduction of selenomethionine oxide. Free Radical Res. 32: 371-376; 2000.
12. Assmann, A.; Briviba, K.; Sies, H. Reduction of methionine selenoxide to selenomethionine by glutathione. Arch. Biochem. Biophys. 349: 201-203; 1998.
13. Hondal, R. J.; Motley, A. K.; Hill, K. E.; Burk, R. F. Failure of selenomethionine residues in albumin and immunoglobulin G to protect against peroxynitrite. Arch. Biochem. Biophys. 371: 29-34; 1999.
14. Stadtman, E. R.; Berlett, B. S. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab. Rev. 30: 225-243; 1998.
15. Isabella, D. D.; Scaloni, A.; Giustarini, D.; Cavarra, E. ; Tell, G.; Lungarella, G.; Colombo, R.; Rossi, R.; Milzani, A. Proteins as biomarkers of oxidative
/nitrosative stress in desease: The contribution of redox proteomics. Mass Spectrometry Reviews 24: 55-99; 2005.
16. Berlett, B. S.; Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272: 20313-20316; 1997.
17. Davies, M. J.; Dean, R. T. Radical-mediated protein oxidation. From chemistry to medicine. The pathology of protein oxidation. New York: Oxford University Press, Inc. 1997.
18. Dean, R. T.; Fu, S.; Stocker, R.; Davies, M. J. Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 324: 1-18; 1997.
19. Grune, T.; Merker, K.; Sandig, G.; Davies, K. J. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem. Biophys. Res. Commun. 305: 709-718; 2003.
20. Giasson, B. I.; Duda, J. E. ; Murray, I. V. ; Chen, Q. ; Souza, J. M.; Hurting, H. I.; Ischiropoulos, H.; Trojanowski, J. Q.; Lee, V. M. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 290: 985-989; 2000.
21. Giasson, B. I.; Ischiropoulos, H. ; Lee, V. M.; Trojanowski, J. Q. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s desease. Free Radic. Biol. Med. 32: 1264-1275; 2002.
22. Butterfield, D. A.; Kanski, J. Brain protein oxidation in age-related
neurodegenerative disorders that are associated with aggregated proteins. Mech. Aging Devel. 122: 945-962; 2001.
23. Weiss, S. J.; LoBuglio, A. F. Phagocyte-generated oxygen metabolites and cellular injury. Lab. Invest. 47: 5-18; 1982.
24. Kettle, A. J.; Winterbourn, C. C. Myeloperoxidase: a key regulator of neutrophil oxidant production. Redox Rep. 3: 3-15; 1997.
25. Jesaitis, A. J.; Dratz, E. A. (eds) (1992) The molecular basis of oxidative damage by leukocytes. CRC Press, Boca Raton, pp 1-368
26. Winterbourn, C. C.; Kettle, A. J. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic. Biol. Med. 29: 403-409; 2000.
27. Prutz, W. A. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch. Biochem. Biophys. 332: 110-120; 1996.
28. Winterbourn, C. C.; van den Berg, J. J. M.; Roitman, E.; Kuypers, F.
A. Chlorohydrin formation from unsaturated fatty acids reacted with HOCl. Arch. Biochem. Biophys. 296: 547-555; 1992.
29. Carr, A. C.; van den Berg, J. J. M.; Winterbourn, C. C. Chlorination of cholesterol in cell membranes by hypochlorous acid. Arch. Biochem. Biophys. 332: 63-69; 1996.
30. Weitzman, S. A.; Gordon, L. I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood, 76: 655-663; 1990.
31. Heinecke, J. W. Mechanisms of oxidative damage by myeloperoxidase in atherosclerosis and other inflammatory disorders. J. Lab. Clin. Med. 133: 321-325; 1999.
32. Winterbourn, C. C.; Brennan, S. O. Characterization of the oxidation products of the reaction between reduced glutathione and hypochlorous acid. Biochem. J. 326: 87-92; 1997.
33. Van der Vlier, A.; Eiserich, J. P.; Halliwell, B.; Cross, C. E. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J. Am. Chem. Soc. 272: 7617-7625; 1997.
34. Eiserich, J. P.; Hristova, M.; Cross, C. E.; Jones, A. D.; Freeman, B. A.; Halliwell,B.; van der Vlier, A. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Narute, 391: 393-397; 1998.
35. Farrell, A. J.; Blake, D. R.; Palmer, R. M.; Moncada, S. Increased concentration of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic disease. Ann. Rheum. Dis. 51: 1219-1222; 1992.
36. Eiserich, J. P.; Cross, C. E.; Jones, A. D.; Halliwell, B.; van der Vliet; A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J. Chrom. B. 271: 9199-19208; 1996.
37. Whiteman, M.; Spencer, J. P.; Jenner, A.; Halliwell, B. Hypochlorous acid-induced DNA base modification: potentiation by nitrite: biomarkers of DNA damage by reactive oxygen species. Biochem. Biophys. Res. Commun. 257: 572-576; 1999.
38. Byun, J.; Henderson, J. P.; Mueller, D. M.; Heinecke, J. W. 8-Nitro-2’-deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase-hydrogen peroxide-nitrite system of activated human phagocytes. Biochemistry, 38: 2590-2600; 1999.
39. Schmitt, D.; Shen, Z.; Zhang, R.; Colles, S. M.; Wu, W.; Salomon, R. G.; Chen, Y.;Chisolm, G. M.; Hazen, S. L. Leukocytes utilize myeloperoxidase- generated nitrating intermediates as physiological catalysts for the generation of biologically active oxidized lipids and sterols in serum. Biochemistry, 38: 16904-16915; 1999.
40. Panasenko, O. M.; Briviba, K.; Klotz, L.O.; Sies, H. Oxidative modification and nitration of human low-density lipoproteins by the reaction of hypochlorous acid with nitrite. Arch. Biochem. Biophys. 343: 254-259; 1997.
41. Schafer, F. Q.; Buettner, F. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathionine couple. Free Radic. Biol. Med. 30: 1191-1212; 2001.
42. Vogt, W. Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic. Biol. Med. 18: 93-105; 1995.
43. Levine, R.L.; Moskovitz, J.; Stadtman, E.R. Oxidation of methionine in proteins: Roles in antioxidant defense and cellular regulation. IUBMB Life, 50: 301-307; 2000.
44. Brot, N.; Weissbach, H. Peptide methionine sulfoxide reductase: biochemistry and physiological role. Peptide Science, 55: 288-296; 2000.
45. Weissbach, H., Etienne, F., Hoshi, T., Heinemann, S.H., Lowther, W.T., Metthews, B., John, G. St., Nathan, C., and Brot., N. Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch. Biochem. Biophys. 397: 172-178; 2002.
46. Stadtman, E.R.; Moskovitz, J.; Berlett, B.S.; Levine, R.L. Cyclic oxidation and reduction of protein methionine residues is an important antioxidation mechanism. Mol. Cell Biochem. 234-235: 3-9; 2002.
47. Moskovitz, J.; Flescher, E.; Berlett, B.S.; Azare, J.; Poston, J.M.; Stadtman, E.R. Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and hyman T cells provides them with high resistance to oxidative stress. Proc. Natl. Acak Sci USA, 95: 14071-14075; 1998.
48. Moskovita, J.; Bar-Noy, S.; Williams, W. M.; Requena, J.; Berlett, B. S.; Stadtman, E. R. Methionine sulfoxide reductase A (MSrA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Natl. Acad. Sci. USA, 98: 12920-12925; 2001.
49. Gavin E. Arteel;Helmut Sies. The biochemistry of selenium and the glutathione system. Environmental Toxicology and Pharmacology, 10: 153-158; 2001.
50. Beck, M.A.; Levander, O.A. Dietary oxidative stress and the potentiation of viral infection. Annu. Rev. Nutr. 18: 93-116; 1998.
51. Ganther, H.E. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis, 20: 1657-1682; 1999.
52. Rayman, M. P. The importance of selenium to human health. Lancet. 356: 233-241; 2000.
53. Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno- organic compound-I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem. Pharmacol. 33: 3235-3239; 1984.
54. Woo, H. A.; Chae, H. Z.; Hwang, S. C.; Yang, K. S.; Kang, S. W.; Kim, K.; Rhee, S. G. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science, 300: 653-656; 2003.
55. Halliwell, B.; Gutteridge, J.M.C. Free radicals in biology and medicine. New York: Oxford University Press, Inc. 1999.
56. Cotgreave, I.A.; Gerdes, R.G. Recent trends in glutathione biochemistry- glutathione-protein interactions: A molecular link between oxidative stress and cell proliferation. Biochem. Biophys. Res. Commun. 242: 1-9; 1998.
57. Klatt, P.; Lamas, S. Regulation of protein function by S-glutathiolation in response in oxidative and nitrosative stress. Eur. J. Biochem. 267: 4928-4944; 2000.
58. Okamoto, T.; Akaike, T.; Sawa, T.; Miyamoto, Y.; van der Vliet, A.; Maeda, H. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J. Biol. Chem. 276: 29596-29602; 2001.
59. Arner, E.S.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267: 6102-6109; 2000.
60. Schwaller, M.; Wilkinson, B.; Gilbert, H.F. Reduction-reoxidation cycles contribute to catalysis of disulfide isomerization by protein-disulfide isomerase. J. Biol. Chem. 278: 7154-7159; 2003.
61. Hogg, N. The biochemistry and physiology of S-nitrosothiols. Annu. Rev. Pharmacol. Toxicol. 42: 585-600; 2002.
62. Frand, A.R.; Cuozzo, J.W.; Kaiser, C.A. Pathways for protein disulphide bond formation. Trends Cell Biol. 10: 203-210; 2000.
63. Georgiou, G. How to flip the (redox) switch. Cell, 111: 607-610; 2002.
64. Klatt, P.; Molina, E.S.; Lacoba, M.C.; Padilla, C.A.; Martines -Glaisteo, E.; Barcena; J.A.; Lamas, S. Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. FASEB J. 13: 1481-1490; 1999.
65. Lind, C.; Gerdes, R.; Hamnell, Y.; Schuppe-Koistinen, I.; von Lowenhielm, H.B.; Holmgren, A.; Cotgreave, I.A. Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch. Biochem. Biophys. 406: 229-240; 2002.
66. Eaton, P.; Fuller, W.; Shattock, M.J. S-Thiolation of HSP27 regulates its multimeric aggreagate size independently of phosphorylation. J. Biol. Chem. 277: 21189-21196; 2002.
67. Eaton, P.; Wright, N.; Hearse, D.J.; Shattock, M.J. Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. J. Mol. Cell Cardiol. 34: 1549-1560; 2002.
68. Eaton, P.; Byers, H.L.; Leeds, N.; Ward, M.A.; Shattock, M.J. Detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion. J. Biol. Chem. 277: 9806-9811; 2002.
69. Fratelli, M.; Demol, H.; Puype, M.; Casagrande, S.; Eberini, I. ; Salmona, M. ; Bonetto, V. ; Mengozzi, M. ; Duffieux, F. ; Miclet, E. ; Bachi, A. ; Vandekerckhove, J. ; Gianazza, E. ; Chezzi, P. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc. Natl. Acad. Sci. USA, 99: 3505-3510 ; 2002.
70. Dalle-Donne, I. ; Giustarini, D. ; Rossi, R. ; Colombo, R. ; Milzani, A.
Reversible S-glutathionylation of Cys(374) regulates actin filament formation by inducing structural changes in the actin molecule. Free Radic. Biol. Med. 34: 23-32; 2003.
71. Dalle-Donne, I. ; Rossi, R. ; Giustarini, D. ; Colombo, R. ; Milzani, A. Actin S-glutathionylation : Evidence against a role for glutathione disulfide. Free Radic. Biol. Med. 35: 1185-1193; 2003.
72. Dalle-Donne, I.; Milzani, A.; Giustarini, D.; Di Simplicio, P.; Colombo, R.; Rossi, R. S-NO-actin : S-nitrosylation kinetics and the effect on isolated vascular smooth muscle. J. Muscle Res. Cell Motil. 21: 171-181; 2000.
73. Jaffrey, S.R.; Erdjument-Bromage, H.; Ferris, C.D.; Tempst, P.; Snyder, S.H. Proteins S-nitrosylation: A physiological signal for neuronal nitric oxide. Nat. Cell Biol. 3: 193-197; 2001.
74. StamLer, J.S.; Lamas, S.; Fang, F.C. Nitrosylation: The prototypic redox-based signaling mechanism. Cell, 106: 675-683; 2001.
75. Matsumoto, A.; Comatas, K.E.; Liu, L.; StamLer, J.S. Screening for nitric oxide-depenednt protein-protein interactions. Science, 301: 657-661; 2003.
76. Mannick, J.B.; HauSladen, A.; Liu, L.; Hess, D.T.; Zeng, M.; Miao, Q.X.; Kane, L.S.; Gow, A.J.; StamLer, J.S. Fas-induced caspase denitrosylation. Science, 284: 651-654; 1999.
77. Woods, A.A.; Linton, S.M.; Davies, M.J. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques. Biochem. J. 370: 729-735; 2003.
78. Lo, S. C.; Aft, R.; Mueller, G. C. Role of nonhemoglobin heme accumulation in the terminal differentiation of friend erythroleukemia cells. Cancer Res. 41: 864-870; 1981.
79. Ross, J.; Sautner, D. Induction of globin mRNA accumulation by hemin in cultured erythroleukemic cells. Cell, 8: 513–520; 1976.
80. Ishii, D. N.; Maniatis, G. M. Hemin promotes rapid neurite outgrowth in cultured mouse neuroblastoma cells. Nature, 274: 372-374; 1978.
81. Chen, J. J.; London, I. M. Hemin enhances the differentiation of mouse 3T3 cells to adipocytes. Cell, 26: 117-122; 1981.
82. Skulachev, V. P. Membrane bioenergetics. Berlin: Springer; 1988.
83. Skulachev, V. P. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett. 423: 275-280; 1998.
84. Korshunov, S. S.; Krasnikov, B. F.; Pereverzev, M. O.; Skulachev, V. P. The antioxidant functions of cytochrome c. FEBS Lett. 462: 192-198; 1998.
85. Forman, H. J.; Azzi, A. On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J. 11: 374-375; 1997.
86. Bunn, H. F.; Forget, B. G. In: Hemoglobin. Mol. Gen. Clin. Aspects. Philadelphia: Saunders, 634-662; 1986.
87. Winterbourn, C. C. Free radical production and oxidative reactions of hemoglobin. Environ. Health Perspect. 64: 321-330; 1985.
88. Romero, F. J.; Ordonez, I.; Arduini, A.; Cadenas, E. The reactivity of thiols and disulfides with different redox states of myoglobin. Redox and addition reactions and formation of thiyl radical intermediates. J. Biol. Chem. 267: 1680-1688; 1992.
89. Meister, A. On the antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol. 44: 1905-1915; 1992.
90. Or-Rashid, M. M.; Onodera, R.; Wadud, S.; Mohammed, N. Convenient method of threonine, methionine and their related amino compounds by high-performance liquid chromatography and its application to rumen fluid, J.Chrom. B. 741: 279-287; 2000.
91. Atsushi, M.; Motomasa, Tanaka, S. T.; Koichiro, I.; Hiroshi, H.; Isao, M.
Detection of a tryptophan radical as an intermediate species in the reaction of horseradish peroxidase mutant (Phe-221→Trp) and hydrogen peroxide.J. Biol. Chem. 273: 14753-14760; 1998.
92. Poulos, T.L.; Kraut, J. The stereochemistry of peroxidase catalysis. J. Biol. Chem. 255: 8199-8205; 1980.
93. Antonini, E.; Wyman, J.; Brunori, M.; Taylor, J. F.; Rossi-Fanelli, A.; Caputo, A. Studies on the oxidation-reduction potentials of heme Proteins. I. human hemoglobin. J. Bilo. Chem. 239: 907-912; 1964.
94. Shifman, J. M.; Gibney, B. R.; Sharp, R. E.; Dutton, P. L. Heme redox potential control in de novo designed four-a-helix bundle proteins. Biochemistry, 39: 14813-14821; 2000.
95. Lexa, D.; Sayeant, J. M.; Zickler, J. Electrochemistry of Vitamin B12. 5. Cyanocobalamins. J. Am. Chem. Soc.; 102: 2654-2663; 1980.
96. Nada, A. A.; Klm, F. H.; Tlmothy, M. V. Reductive dechlorination of carbon tetrachloride by cobalamin (II) in the presence of dithiothreitol: mechanistic study, effect of redox potential and pH. Environ. Sci. Technol. 28: 246-252; 1994.
97. Freya, Q. S.; Garry, R. B. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30: 1191-1212; 2001.
98. Derick, H.; Chandan, K. S.; Sashwati, R.; Michael, S. K.; Hans, J. T.; Lester, P. Protection against glutamate-induced cytotoxicity in C6 glial cells by thiol antioxidants. Am. J. Physiol. Regul. Integr. Comp. Physiol. 273: 1771-1778; 1997.
100. Dean E. C. Oxidation-reduction reactions of metal ions. Environ. Health Perspect. 103 (suppl 1): 17-19; 1995.
101. Herold, S.; Rehmann, F-J. K. Kinetics of the reactions of nitrogen monoxide and nitrite with ferryl hemoglobin. Free Radic. Biol. Med. 34: 531-545; 2003.
102. Huang, M.-T.; Ferraro, T. Phenolic compounds in food and cancer prevention. In: Ho, C.-T., ed. Phenolic compounds in food and their effects on health II. Antioxidants and Cancer Prevention. Washington, DC: The American Chemical Society, 8-33; 1992.
103. Koppnol, W. H.; Moreno, J. J.; Pryor, W. A.; Ischiropoulos, H.; Bedkman, J. S.
Peroxynitrite, a clocked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5: 834-642; 1992.
104. Ischiropoulos, H.; Zhu, L.; Beckman, J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298: 446-451; 1992.
105. Lemecier, J. N.; Squadrito, G. L.; Pryor, W. A. Spin trap studies on the decomposition of peroxynitrite. Arch. Biochem. Biophys. 321: 31-39; 1995.
106. Bechman, J. S.; Beckman, T. W.; Chem, J.; Marshall, P. A.; Freeman, B. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA. 87: 1620-1624; 1990.
107. Marla, S. S.; Lee, J.; Groves, J. T. Peroxynitrite rapidly permeates phospholipid membranes. Proc. Natl. Acad. Sci. USA. 94: 14243-14248; 1997.
108. Denicola, A.; Souza, J. M.; Radi, R. Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl. Acad. Sci. USA. 95: 3566-3571; 1998.
109. Lindahl, T.; Nyberg. B. Rate of depurination of native deoxyribonucleic acid. Biochemistry, 11: 3610-3618; 1972.
110. Singer, B.; Grunberfer. D. Depurination and depyrimidination. Molecular Biology of Mutagens and Carcinogens. pp 16-19, Plenum Press, New York. 1983.
111. Boiteuz, S.; Laval, J. Coding properties of poly-(deoxycytidylic acid)
templates containing uracil or apyrimidinic sites: in vitro modulation of mutagenesis by deoxyribonucleic acid repair enzymes. Biochemistry, 21: 6746-6751; 1982.
112. Loeb, L.; Preston, B. D. Mutagenesis by apurinic/apyrimidinic sites. Ann. Rev. Genetics. 20: 201-230; 1986.
113. Hiroshi,I.; Ken, A.; Yoshiharu K.; Kenji, M.; Keisuke M.; Ayumi, A.; Yasuhiko T.; Kihei, K. Synthesis and damage specificity of a novel probe for the detection of abasic sites in DNA. Biochemistry, 32: 8276-8283; 1993.
114. Boturyn, D.; Boudali, A.; Constant, J.F.; Defrancq, E.; Lhomme, J. Synthesis of fluorescent probes for the detection of abasic sites in DNA. Tetrahedron, 53: 5485-5492; 1997.
115. Harusawa, S.; Yoshida, K.; Kojima, C.; Araki, L.; Kurihara, T. Design and synthesis of an aminobenzo-15-crown-5-labeled estradiol tethered with disulfide linkage. Tetrahedron, 60: 11911-11922; 2004.
116.Cheng, S. F.; Chau, L. K. Colloidal gold-modified optical fiber for chemical and biochemical sensing. Anal. Chem. 75: 16-21; 2003.
117. Underwood, S.; Mulvaney, P. Effect of the solution refractive index on the color of gold colloids. Langmuir. 10: 3427-3430; 1994.
118. Jensen, T. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Schatz, G. C.; Van Duyny, R. P. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B. 103: 9846-9853; 1999.
119. Templenton, A. C.; Pletron, J.J.; Mulvaney, P. Solvent refractive index and core charge influences on the surface plasmonabsorbance of alkanethiolate monolayer-protected gold clusters. J. Phys. Chem. B. 104: 564-570; 2000.
120. Okamoto, T.; Yamaguchi, I.; Kobayashi, T. Local plasmon sensor with gold colloid monolayers deposited upon glass substrates . Opt. Lett. 25: 372-374; 2000.
121. Nath, N.; Chilkoti, A. A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface. Anal. Chem. 74: 504-509; 2002.
122. Englebienne, P. Use of colloidal gold surface plasmon resonance peak shift
to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst. 123: 1599-1603; 1998.
123. Eck. D.; Helm, C. A.; Wagner, N. J.; Vaynberg, K. A. Plasmon resonance measurements of the adsorption and adsorption kinetics of a biopolymer onto gold nanocolloids. Langmuir. 17: 957-960; 2001.
124. Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyen, R. P. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 123: 1471-1482; 2001.
125. Talpaert-Borle, M.; Liuzzi, M. Reaction of apurinic/apyrimidinic sites with [14C]methoxyamine, a method for the quantitative assay of AP sites in DNA. Biochem. Biophys. Acta. 740: 410-416; 1983.
126. Livingston, D. C. Degradation of apurinic acid by condensation with aldehyde reagents. Biochem. Biophys. Acta. 87: 538-540; 1964.
127. Coombs, M. M.; Livingston, D. C. Reaction of apurinic acid with aldehyde reagents. Biochem. Biophys. Acta. 174: 161-173; 1969 .
128. Kubo, K.; Ide, H.; Wallace, S. S.; Kow, Y. W. A novel sensitive and specific assay for abasic sites, the most commonly produced DNA lesion. Biochemistry, 31: 3703-3708; 1992.
129. Ohshima, H.; Bartsch, H. Chronic infections and inflammatory processes as
cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res. 305: 253-264; 1994.
130. Wink, D. A.; Vodovotz, Y.; Laval, J.; Laval, F.; Dwhirst, M. W.; Mitchell, J.B.
The multifaceted roles of nitric oxide in cancer. Carcinogenesis, 19: 711-721; 1998.
131. Suzuki, T.; Yamaoka, R.; Nishi, M.; Ide, H.; Makino, K. Isolation and characterization of a novel product, 2’-deoxyoxanosine, from 2’-deoxyguanosine, oligodeoxynucleotide,and calf thymus DNA treated by nitrous acid and nitric oxide. J. Am. Chem. Soc. 118: 2515-2516; 1996.
132. Suzuki, T.; Ide, H.; Yamada, M.; Endo, N.; Kanaori, K.; Tajima, K.; Morii, T.; Makino, K. Formation of 2'-deoxyoxanosine from 2'-deoxyguanosine and nitrous acid: mechanism and intermediates. Nucleic Acids Res. 28: 544-551; 2000.
133. Lucas, L. T.; Gatehouse, D.; Shuker, D. E. Efficient nitroso group transfer from N-nitrosoindoles to nucleotides and 2'-deoxyguanosine at physiological pH. A new pathway for N-nitrosocompounds to exert genotoxicity. J. Biol.Chem. 274: 18319-18326; 1999.
134. Nakano, T.; Terato, H.; Asagoshi, K.; Masaoka, A.; Mukuta, M.; Ohyama, Y.; Suzuki, T.; Makino, K.; Ide, H. DNA-protein cross-link formation mediated by oxanine: a novel genotoxic mechanism of nitric oxide-induced oxide-induced DNA damage. J. Biol. Chem. 278: 25264-25272; 2003.
135. Suzuki, T.; Yamada, M.; Ide, H.; Kanaori, K.; Tajima, K.; Morii, T.; Makino, K. Identification and characterization of a reaction product of 2'-deoxyoxanosine with glycine.Chem. Res. Toxicol. 13: 227-230; 2000.
136. Hitchcock, T. M.; Dong, L.; Connor, E. E.; Meira, L. B.; Samson, L.D.; Wyatt, M. D.; Cao, W. Oxanine DNA glycosylase activity from mammalian alkyladenine glycosylase. J. Biol. Chem. 279: 38177-38183; 2004.
137. Terato, H.; Masaoka, A.; Asagoshi, K.; Honsho, A.; Ohyama, Y.; Suzuki, T.; Yamada, M.; Makino, K.; Yamamoto, K.; Ide, H. Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress. Nucleic Acids Res. 30: 4975-4984; 2002.
138. Hitchcock, T. M.; Gao, H.; Cao, W. Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V. Nucleic Acids Res. 32: 4071-4080; 2004.
139. Nakano, T.; Katafuchi, A.; Shimizu, R.; Terato, H.; Suzuki, T.; Tauchi, H.; Makino, K.; Skorvaga, M.; Van Houten, B.; Ide, H. Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress. Nucl. Acids Res. 33: 2181-2191; 2005.
140. 謝家榮,蛋白質與去氧核糖核酸交聯產物之研究。國立中正大學化學暨生物化學所碩士論文,2005。
141. Nakano, T.; Terato, H.; Asagoshi, K.; Masaoka, A.; Mukuta, M.; Ohyama, Y.; Suzuki, T.; Makino, K.; Ide H. DNA-protein cross-link formation mediated by oxanine: a novel genotoxic mechanism of nitric oxide-induced DNA damage.
J. Biol. Chem. 278: 25264-25272; 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top