1. H. Sies in Oxidative Stress (Ed.: H. Sies), Academic Press, London, UK, 1985, pp. 1-8
2. H. Sies, Angew. Chem. 1986, 98, 1061-1075; Angew. Chem. Int.Ed. Engl. 25: 1058-1071; 1986.
3. H. Sies in Encyclopedia of Stress, Vol III (Ed.: G. Fink), Academic Press, San Diego,2000, pp. 102-105
4. Chen, H. J.; Chang, C. M.; Chen, Y. M. Hemoprotein-mediated reduction of nitrated DNA bases in the presence of reducing agents. Free Radic. Biol. Med. 34: 254-268; 2003.
5. Jacob, C.; Giles, G. I.; Giles, N. M. ; Sies, H. Sulfur and selenium: the role of oxidation state in protein structure and function. Angew. Chem. Int. Ed. 42: 4742-4758; 2003.
6..Weissbach, H.; Etienne, F.; Hoshi, T.; Heinemann, S.H.; Lowther, W.T.;
Metthews, B.; John, G. St.; Nathan, C.; and Brot., N. Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch. Biochem. Biophys. 397: 172-178; 2002.
7. Khor, H.K., Fisher, M.T., Schöneich, C., Potential role of methionine sulfoxide in the inactivation of the Chaperone GroEL by hypochlorous acid ( HOCl ) and peroxynitrite ( ONOO-). The Journal of Biological Chemistry, 279: 19486-19493; 2004.
8. Schomburg, L.; Schweizer, U.; Holtmann, B.; FlohS, L. ; Sendtner,M.; KRhrle, J. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem. J. 370: 397- 402; 2003.
9. Hill, K. E. ; Zhou, J.; McMahan, W. J.; Motley, A. K. ; Atkins, J. F.; Gesteland, R. F.; Burk, R. F. Deletion of Selenoprotein P Alters Distribution of Selenium in the Mouse. J. Biol. Chem. 278: 13640-13646; 2003.
10. Thanbichler, M.; Brck, A. Selenoprotein biosynthesis: purification and assay of components involved in selenocysteine biosynthesis and insertion in Escherichia coli. Methods Enzymol. 347: 3-16; 2002.
11. Assmann, A.; Bonifacic, M.; Briviba, K.; Sies, H.; Asmus, D. One-electron reduction of selenomethionine oxide. Free Radical Res. 32: 371-376; 2000.
12. Assmann, A.; Briviba, K.; Sies, H. Reduction of methionine selenoxide to selenomethionine by glutathione. Arch. Biochem. Biophys. 349: 201-203; 1998.
13. Hondal, R. J.; Motley, A. K.; Hill, K. E.; Burk, R. F. Failure of selenomethionine residues in albumin and immunoglobulin G to protect against peroxynitrite. Arch. Biochem. Biophys. 371: 29-34; 1999.
14. Stadtman, E. R.; Berlett, B. S. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab. Rev. 30: 225-243; 1998.
15. Isabella, D. D.; Scaloni, A.; Giustarini, D.; Cavarra, E. ; Tell, G.; Lungarella, G.; Colombo, R.; Rossi, R.; Milzani, A. Proteins as biomarkers of oxidative
/nitrosative stress in desease: The contribution of redox proteomics. Mass Spectrometry Reviews 24: 55-99; 2005.
16. Berlett, B. S.; Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272: 20313-20316; 1997.
17. Davies, M. J.; Dean, R. T. Radical-mediated protein oxidation. From chemistry to medicine. The pathology of protein oxidation. New York: Oxford University Press, Inc. 1997.
18. Dean, R. T.; Fu, S.; Stocker, R.; Davies, M. J. Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 324: 1-18; 1997.
19. Grune, T.; Merker, K.; Sandig, G.; Davies, K. J. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem. Biophys. Res. Commun. 305: 709-718; 2003.
20. Giasson, B. I.; Duda, J. E. ; Murray, I. V. ; Chen, Q. ; Souza, J. M.; Hurting, H. I.; Ischiropoulos, H.; Trojanowski, J. Q.; Lee, V. M. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 290: 985-989; 2000.
21. Giasson, B. I.; Ischiropoulos, H. ; Lee, V. M.; Trojanowski, J. Q. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s desease. Free Radic. Biol. Med. 32: 1264-1275; 2002.
22. Butterfield, D. A.; Kanski, J. Brain protein oxidation in age-related
neurodegenerative disorders that are associated with aggregated proteins. Mech. Aging Devel. 122: 945-962; 2001.
23. Weiss, S. J.; LoBuglio, A. F. Phagocyte-generated oxygen metabolites and cellular injury. Lab. Invest. 47: 5-18; 1982.
24. Kettle, A. J.; Winterbourn, C. C. Myeloperoxidase: a key regulator of neutrophil oxidant production. Redox Rep. 3: 3-15; 1997.
25. Jesaitis, A. J.; Dratz, E. A. (eds) (1992) The molecular basis of oxidative damage by leukocytes. CRC Press, Boca Raton, pp 1-368
26. Winterbourn, C. C.; Kettle, A. J. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic. Biol. Med. 29: 403-409; 2000.
27. Prutz, W. A. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch. Biochem. Biophys. 332: 110-120; 1996.
28. Winterbourn, C. C.; van den Berg, J. J. M.; Roitman, E.; Kuypers, F.
A. Chlorohydrin formation from unsaturated fatty acids reacted with HOCl. Arch. Biochem. Biophys. 296: 547-555; 1992.
29. Carr, A. C.; van den Berg, J. J. M.; Winterbourn, C. C. Chlorination of cholesterol in cell membranes by hypochlorous acid. Arch. Biochem. Biophys. 332: 63-69; 1996.
30. Weitzman, S. A.; Gordon, L. I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood, 76: 655-663; 1990.
31. Heinecke, J. W. Mechanisms of oxidative damage by myeloperoxidase in atherosclerosis and other inflammatory disorders. J. Lab. Clin. Med. 133: 321-325; 1999.
32. Winterbourn, C. C.; Brennan, S. O. Characterization of the oxidation products of the reaction between reduced glutathione and hypochlorous acid. Biochem. J. 326: 87-92; 1997.
33. Van der Vlier, A.; Eiserich, J. P.; Halliwell, B.; Cross, C. E. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J. Am. Chem. Soc. 272: 7617-7625; 1997.
34. Eiserich, J. P.; Hristova, M.; Cross, C. E.; Jones, A. D.; Freeman, B. A.; Halliwell,B.; van der Vlier, A. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Narute, 391: 393-397; 1998.
35. Farrell, A. J.; Blake, D. R.; Palmer, R. M.; Moncada, S. Increased concentration of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic disease. Ann. Rheum. Dis. 51: 1219-1222; 1992.
36. Eiserich, J. P.; Cross, C. E.; Jones, A. D.; Halliwell, B.; van der Vliet; A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J. Chrom. B. 271: 9199-19208; 1996.
37. Whiteman, M.; Spencer, J. P.; Jenner, A.; Halliwell, B. Hypochlorous acid-induced DNA base modification: potentiation by nitrite: biomarkers of DNA damage by reactive oxygen species. Biochem. Biophys. Res. Commun. 257: 572-576; 1999.
38. Byun, J.; Henderson, J. P.; Mueller, D. M.; Heinecke, J. W. 8-Nitro-2’-deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase-hydrogen peroxide-nitrite system of activated human phagocytes. Biochemistry, 38: 2590-2600; 1999.
39. Schmitt, D.; Shen, Z.; Zhang, R.; Colles, S. M.; Wu, W.; Salomon, R. G.; Chen, Y.;Chisolm, G. M.; Hazen, S. L. Leukocytes utilize myeloperoxidase- generated nitrating intermediates as physiological catalysts for the generation of biologically active oxidized lipids and sterols in serum. Biochemistry, 38: 16904-16915; 1999.
40. Panasenko, O. M.; Briviba, K.; Klotz, L.O.; Sies, H. Oxidative modification and nitration of human low-density lipoproteins by the reaction of hypochlorous acid with nitrite. Arch. Biochem. Biophys. 343: 254-259; 1997.
41. Schafer, F. Q.; Buettner, F. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathionine couple. Free Radic. Biol. Med. 30: 1191-1212; 2001.
42. Vogt, W. Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic. Biol. Med. 18: 93-105; 1995.
43. Levine, R.L.; Moskovitz, J.; Stadtman, E.R. Oxidation of methionine in proteins: Roles in antioxidant defense and cellular regulation. IUBMB Life, 50: 301-307; 2000.
44. Brot, N.; Weissbach, H. Peptide methionine sulfoxide reductase: biochemistry and physiological role. Peptide Science, 55: 288-296; 2000.
45. Weissbach, H., Etienne, F., Hoshi, T., Heinemann, S.H., Lowther, W.T., Metthews, B., John, G. St., Nathan, C., and Brot., N. Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch. Biochem. Biophys. 397: 172-178; 2002.
46. Stadtman, E.R.; Moskovitz, J.; Berlett, B.S.; Levine, R.L. Cyclic oxidation and reduction of protein methionine residues is an important antioxidation mechanism. Mol. Cell Biochem. 234-235: 3-9; 2002.
47. Moskovitz, J.; Flescher, E.; Berlett, B.S.; Azare, J.; Poston, J.M.; Stadtman, E.R. Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and hyman T cells provides them with high resistance to oxidative stress. Proc. Natl. Acak Sci USA, 95: 14071-14075; 1998.
48. Moskovita, J.; Bar-Noy, S.; Williams, W. M.; Requena, J.; Berlett, B. S.; Stadtman, E. R. Methionine sulfoxide reductase A (MSrA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Natl. Acad. Sci. USA, 98: 12920-12925; 2001.
49. Gavin E. Arteel;Helmut Sies. The biochemistry of selenium and the glutathione system. Environmental Toxicology and Pharmacology, 10: 153-158; 2001.
50. Beck, M.A.; Levander, O.A. Dietary oxidative stress and the potentiation of viral infection. Annu. Rev. Nutr. 18: 93-116; 1998.
51. Ganther, H.E. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis, 20: 1657-1682; 1999.
52. Rayman, M. P. The importance of selenium to human health. Lancet. 356: 233-241; 2000.
53. Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno- organic compound-I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem. Pharmacol. 33: 3235-3239; 1984.
54. Woo, H. A.; Chae, H. Z.; Hwang, S. C.; Yang, K. S.; Kang, S. W.; Kim, K.; Rhee, S. G. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science, 300: 653-656; 2003.
55. Halliwell, B.; Gutteridge, J.M.C. Free radicals in biology and medicine. New York: Oxford University Press, Inc. 1999.
56. Cotgreave, I.A.; Gerdes, R.G. Recent trends in glutathione biochemistry- glutathione-protein interactions: A molecular link between oxidative stress and cell proliferation. Biochem. Biophys. Res. Commun. 242: 1-9; 1998.
57. Klatt, P.; Lamas, S. Regulation of protein function by S-glutathiolation in response in oxidative and nitrosative stress. Eur. J. Biochem. 267: 4928-4944; 2000.
58. Okamoto, T.; Akaike, T.; Sawa, T.; Miyamoto, Y.; van der Vliet, A.; Maeda, H. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J. Biol. Chem. 276: 29596-29602; 2001.
59. Arner, E.S.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267: 6102-6109; 2000.
60. Schwaller, M.; Wilkinson, B.; Gilbert, H.F. Reduction-reoxidation cycles contribute to catalysis of disulfide isomerization by protein-disulfide isomerase. J. Biol. Chem. 278: 7154-7159; 2003.
61. Hogg, N. The biochemistry and physiology of S-nitrosothiols. Annu. Rev. Pharmacol. Toxicol. 42: 585-600; 2002.
62. Frand, A.R.; Cuozzo, J.W.; Kaiser, C.A. Pathways for protein disulphide bond formation. Trends Cell Biol. 10: 203-210; 2000.
63. Georgiou, G. How to flip the (redox) switch. Cell, 111: 607-610; 2002.
64. Klatt, P.; Molina, E.S.; Lacoba, M.C.; Padilla, C.A.; Martines -Glaisteo, E.; Barcena; J.A.; Lamas, S. Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. FASEB J. 13: 1481-1490; 1999.
65. Lind, C.; Gerdes, R.; Hamnell, Y.; Schuppe-Koistinen, I.; von Lowenhielm, H.B.; Holmgren, A.; Cotgreave, I.A. Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch. Biochem. Biophys. 406: 229-240; 2002.
66. Eaton, P.; Fuller, W.; Shattock, M.J. S-Thiolation of HSP27 regulates its multimeric aggreagate size independently of phosphorylation. J. Biol. Chem. 277: 21189-21196; 2002.
67. Eaton, P.; Wright, N.; Hearse, D.J.; Shattock, M.J. Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. J. Mol. Cell Cardiol. 34: 1549-1560; 2002.
68. Eaton, P.; Byers, H.L.; Leeds, N.; Ward, M.A.; Shattock, M.J. Detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion. J. Biol. Chem. 277: 9806-9811; 2002.
69. Fratelli, M.; Demol, H.; Puype, M.; Casagrande, S.; Eberini, I. ; Salmona, M. ; Bonetto, V. ; Mengozzi, M. ; Duffieux, F. ; Miclet, E. ; Bachi, A. ; Vandekerckhove, J. ; Gianazza, E. ; Chezzi, P. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc. Natl. Acad. Sci. USA, 99: 3505-3510 ; 2002.
70. Dalle-Donne, I. ; Giustarini, D. ; Rossi, R. ; Colombo, R. ; Milzani, A.
Reversible S-glutathionylation of Cys(374) regulates actin filament formation by inducing structural changes in the actin molecule. Free Radic. Biol. Med. 34: 23-32; 2003.
71. Dalle-Donne, I. ; Rossi, R. ; Giustarini, D. ; Colombo, R. ; Milzani, A. Actin S-glutathionylation : Evidence against a role for glutathione disulfide. Free Radic. Biol. Med. 35: 1185-1193; 2003.
72. Dalle-Donne, I.; Milzani, A.; Giustarini, D.; Di Simplicio, P.; Colombo, R.; Rossi, R. S-NO-actin : S-nitrosylation kinetics and the effect on isolated vascular smooth muscle. J. Muscle Res. Cell Motil. 21: 171-181; 2000.
73. Jaffrey, S.R.; Erdjument-Bromage, H.; Ferris, C.D.; Tempst, P.; Snyder, S.H. Proteins S-nitrosylation: A physiological signal for neuronal nitric oxide. Nat. Cell Biol. 3: 193-197; 2001.
74. StamLer, J.S.; Lamas, S.; Fang, F.C. Nitrosylation: The prototypic redox-based signaling mechanism. Cell, 106: 675-683; 2001.
75. Matsumoto, A.; Comatas, K.E.; Liu, L.; StamLer, J.S. Screening for nitric oxide-depenednt protein-protein interactions. Science, 301: 657-661; 2003.
76. Mannick, J.B.; HauSladen, A.; Liu, L.; Hess, D.T.; Zeng, M.; Miao, Q.X.; Kane, L.S.; Gow, A.J.; StamLer, J.S. Fas-induced caspase denitrosylation. Science, 284: 651-654; 1999.
77. Woods, A.A.; Linton, S.M.; Davies, M.J. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques. Biochem. J. 370: 729-735; 2003.
78. Lo, S. C.; Aft, R.; Mueller, G. C. Role of nonhemoglobin heme accumulation in the terminal differentiation of friend erythroleukemia cells. Cancer Res. 41: 864-870; 1981.
79. Ross, J.; Sautner, D. Induction of globin mRNA accumulation by hemin in cultured erythroleukemic cells. Cell, 8: 513–520; 1976.
80. Ishii, D. N.; Maniatis, G. M. Hemin promotes rapid neurite outgrowth in cultured mouse neuroblastoma cells. Nature, 274: 372-374; 1978.
81. Chen, J. J.; London, I. M. Hemin enhances the differentiation of mouse 3T3 cells to adipocytes. Cell, 26: 117-122; 1981.
82. Skulachev, V. P. Membrane bioenergetics. Berlin: Springer; 1988.
83. Skulachev, V. P. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett. 423: 275-280; 1998.
84. Korshunov, S. S.; Krasnikov, B. F.; Pereverzev, M. O.; Skulachev, V. P. The antioxidant functions of cytochrome c. FEBS Lett. 462: 192-198; 1998.
85. Forman, H. J.; Azzi, A. On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J. 11: 374-375; 1997.
86. Bunn, H. F.; Forget, B. G. In: Hemoglobin. Mol. Gen. Clin. Aspects. Philadelphia: Saunders, 634-662; 1986.
87. Winterbourn, C. C. Free radical production and oxidative reactions of hemoglobin. Environ. Health Perspect. 64: 321-330; 1985.
88. Romero, F. J.; Ordonez, I.; Arduini, A.; Cadenas, E. The reactivity of thiols and disulfides with different redox states of myoglobin. Redox and addition reactions and formation of thiyl radical intermediates. J. Biol. Chem. 267: 1680-1688; 1992.
89. Meister, A. On the antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol. 44: 1905-1915; 1992.
90. Or-Rashid, M. M.; Onodera, R.; Wadud, S.; Mohammed, N. Convenient method of threonine, methionine and their related amino compounds by high-performance liquid chromatography and its application to rumen fluid, J.Chrom. B. 741: 279-287; 2000.
91. Atsushi, M.; Motomasa, Tanaka, S. T.; Koichiro, I.; Hiroshi, H.; Isao, M.
Detection of a tryptophan radical as an intermediate species in the reaction of horseradish peroxidase mutant (Phe-221→Trp) and hydrogen peroxide.J. Biol. Chem. 273: 14753-14760; 1998.
92. Poulos, T.L.; Kraut, J. The stereochemistry of peroxidase catalysis. J. Biol. Chem. 255: 8199-8205; 1980.
93. Antonini, E.; Wyman, J.; Brunori, M.; Taylor, J. F.; Rossi-Fanelli, A.; Caputo, A. Studies on the oxidation-reduction potentials of heme Proteins. I. human hemoglobin. J. Bilo. Chem. 239: 907-912; 1964.
94. Shifman, J. M.; Gibney, B. R.; Sharp, R. E.; Dutton, P. L. Heme redox potential control in de novo designed four-a-helix bundle proteins. Biochemistry, 39: 14813-14821; 2000.
95. Lexa, D.; Sayeant, J. M.; Zickler, J. Electrochemistry of Vitamin B12. 5. Cyanocobalamins. J. Am. Chem. Soc.; 102: 2654-2663; 1980.
96. Nada, A. A.; Klm, F. H.; Tlmothy, M. V. Reductive dechlorination of carbon tetrachloride by cobalamin (II) in the presence of dithiothreitol: mechanistic study, effect of redox potential and pH. Environ. Sci. Technol. 28: 246-252; 1994.
97. Freya, Q. S.; Garry, R. B. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30: 1191-1212; 2001.
98. Derick, H.; Chandan, K. S.; Sashwati, R.; Michael, S. K.; Hans, J. T.; Lester, P. Protection against glutamate-induced cytotoxicity in C6 glial cells by thiol antioxidants. Am. J. Physiol. Regul. Integr. Comp. Physiol. 273: 1771-1778; 1997.
100. Dean E. C. Oxidation-reduction reactions of metal ions. Environ. Health Perspect. 103 (suppl 1): 17-19; 1995.
101. Herold, S.; Rehmann, F-J. K. Kinetics of the reactions of nitrogen monoxide and nitrite with ferryl hemoglobin. Free Radic. Biol. Med. 34: 531-545; 2003.
102. Huang, M.-T.; Ferraro, T. Phenolic compounds in food and cancer prevention. In: Ho, C.-T., ed. Phenolic compounds in food and their effects on health II. Antioxidants and Cancer Prevention. Washington, DC: The American Chemical Society, 8-33; 1992.
103. Koppnol, W. H.; Moreno, J. J.; Pryor, W. A.; Ischiropoulos, H.; Bedkman, J. S.
Peroxynitrite, a clocked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5: 834-642; 1992.
104. Ischiropoulos, H.; Zhu, L.; Beckman, J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298: 446-451; 1992.
105. Lemecier, J. N.; Squadrito, G. L.; Pryor, W. A. Spin trap studies on the decomposition of peroxynitrite. Arch. Biochem. Biophys. 321: 31-39; 1995.
106. Bechman, J. S.; Beckman, T. W.; Chem, J.; Marshall, P. A.; Freeman, B. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA. 87: 1620-1624; 1990.
107. Marla, S. S.; Lee, J.; Groves, J. T. Peroxynitrite rapidly permeates phospholipid membranes. Proc. Natl. Acad. Sci. USA. 94: 14243-14248; 1997.
108. Denicola, A.; Souza, J. M.; Radi, R. Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl. Acad. Sci. USA. 95: 3566-3571; 1998.
109. Lindahl, T.; Nyberg. B. Rate of depurination of native deoxyribonucleic acid. Biochemistry, 11: 3610-3618; 1972.
110. Singer, B.; Grunberfer. D. Depurination and depyrimidination. Molecular Biology of Mutagens and Carcinogens. pp 16-19, Plenum Press, New York. 1983.
111. Boiteuz, S.; Laval, J. Coding properties of poly-(deoxycytidylic acid)
templates containing uracil or apyrimidinic sites: in vitro modulation of mutagenesis by deoxyribonucleic acid repair enzymes. Biochemistry, 21: 6746-6751; 1982.
112. Loeb, L.; Preston, B. D. Mutagenesis by apurinic/apyrimidinic sites. Ann. Rev. Genetics. 20: 201-230; 1986.
113. Hiroshi,I.; Ken, A.; Yoshiharu K.; Kenji, M.; Keisuke M.; Ayumi, A.; Yasuhiko T.; Kihei, K. Synthesis and damage specificity of a novel probe for the detection of abasic sites in DNA. Biochemistry, 32: 8276-8283; 1993.
114. Boturyn, D.; Boudali, A.; Constant, J.F.; Defrancq, E.; Lhomme, J. Synthesis of fluorescent probes for the detection of abasic sites in DNA. Tetrahedron, 53: 5485-5492; 1997.
115. Harusawa, S.; Yoshida, K.; Kojima, C.; Araki, L.; Kurihara, T. Design and synthesis of an aminobenzo-15-crown-5-labeled estradiol tethered with disulfide linkage. Tetrahedron, 60: 11911-11922; 2004.
116.Cheng, S. F.; Chau, L. K. Colloidal gold-modified optical fiber for chemical and biochemical sensing. Anal. Chem. 75: 16-21; 2003.
117. Underwood, S.; Mulvaney, P. Effect of the solution refractive index on the color of gold colloids. Langmuir. 10: 3427-3430; 1994.
118. Jensen, T. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Schatz, G. C.; Van Duyny, R. P. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B. 103: 9846-9853; 1999.
119. Templenton, A. C.; Pletron, J.J.; Mulvaney, P. Solvent refractive index and core charge influences on the surface plasmonabsorbance of alkanethiolate monolayer-protected gold clusters. J. Phys. Chem. B. 104: 564-570; 2000.
120. Okamoto, T.; Yamaguchi, I.; Kobayashi, T. Local plasmon sensor with gold colloid monolayers deposited upon glass substrates . Opt. Lett. 25: 372-374; 2000.
121. Nath, N.; Chilkoti, A. A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface. Anal. Chem. 74: 504-509; 2002.
122. Englebienne, P. Use of colloidal gold surface plasmon resonance peak shift
to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst. 123: 1599-1603; 1998.
123. Eck. D.; Helm, C. A.; Wagner, N. J.; Vaynberg, K. A. Plasmon resonance measurements of the adsorption and adsorption kinetics of a biopolymer onto gold nanocolloids. Langmuir. 17: 957-960; 2001.
124. Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyen, R. P. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 123: 1471-1482; 2001.
125. Talpaert-Borle, M.; Liuzzi, M. Reaction of apurinic/apyrimidinic sites with [14C]methoxyamine, a method for the quantitative assay of AP sites in DNA. Biochem. Biophys. Acta. 740: 410-416; 1983.
126. Livingston, D. C. Degradation of apurinic acid by condensation with aldehyde reagents. Biochem. Biophys. Acta. 87: 538-540; 1964.
127. Coombs, M. M.; Livingston, D. C. Reaction of apurinic acid with aldehyde reagents. Biochem. Biophys. Acta. 174: 161-173; 1969 .
128. Kubo, K.; Ide, H.; Wallace, S. S.; Kow, Y. W. A novel sensitive and specific assay for abasic sites, the most commonly produced DNA lesion. Biochemistry, 31: 3703-3708; 1992.
129. Ohshima, H.; Bartsch, H. Chronic infections and inflammatory processes as
cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res. 305: 253-264; 1994.
130. Wink, D. A.; Vodovotz, Y.; Laval, J.; Laval, F.; Dwhirst, M. W.; Mitchell, J.B.
The multifaceted roles of nitric oxide in cancer. Carcinogenesis, 19: 711-721; 1998.
131. Suzuki, T.; Yamaoka, R.; Nishi, M.; Ide, H.; Makino, K. Isolation and characterization of a novel product, 2’-deoxyoxanosine, from 2’-deoxyguanosine, oligodeoxynucleotide,and calf thymus DNA treated by nitrous acid and nitric oxide. J. Am. Chem. Soc. 118: 2515-2516; 1996.
132. Suzuki, T.; Ide, H.; Yamada, M.; Endo, N.; Kanaori, K.; Tajima, K.; Morii, T.; Makino, K. Formation of 2'-deoxyoxanosine from 2'-deoxyguanosine and nitrous acid: mechanism and intermediates. Nucleic Acids Res. 28: 544-551; 2000.
133. Lucas, L. T.; Gatehouse, D.; Shuker, D. E. Efficient nitroso group transfer from N-nitrosoindoles to nucleotides and 2'-deoxyguanosine at physiological pH. A new pathway for N-nitrosocompounds to exert genotoxicity. J. Biol.Chem. 274: 18319-18326; 1999.
134. Nakano, T.; Terato, H.; Asagoshi, K.; Masaoka, A.; Mukuta, M.; Ohyama, Y.; Suzuki, T.; Makino, K.; Ide, H. DNA-protein cross-link formation mediated by oxanine: a novel genotoxic mechanism of nitric oxide-induced oxide-induced DNA damage. J. Biol. Chem. 278: 25264-25272; 2003.
135. Suzuki, T.; Yamada, M.; Ide, H.; Kanaori, K.; Tajima, K.; Morii, T.; Makino, K. Identification and characterization of a reaction product of 2'-deoxyoxanosine with glycine.Chem. Res. Toxicol. 13: 227-230; 2000.
136. Hitchcock, T. M.; Dong, L.; Connor, E. E.; Meira, L. B.; Samson, L.D.; Wyatt, M. D.; Cao, W. Oxanine DNA glycosylase activity from mammalian alkyladenine glycosylase. J. Biol. Chem. 279: 38177-38183; 2004.
137. Terato, H.; Masaoka, A.; Asagoshi, K.; Honsho, A.; Ohyama, Y.; Suzuki, T.; Yamada, M.; Makino, K.; Yamamoto, K.; Ide, H. Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress. Nucleic Acids Res. 30: 4975-4984; 2002.
138. Hitchcock, T. M.; Gao, H.; Cao, W. Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V. Nucleic Acids Res. 32: 4071-4080; 2004.
139. Nakano, T.; Katafuchi, A.; Shimizu, R.; Terato, H.; Suzuki, T.; Tauchi, H.; Makino, K.; Skorvaga, M.; Van Houten, B.; Ide, H. Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress. Nucl. Acids Res. 33: 2181-2191; 2005.
140. 謝家榮,蛋白質與去氧核糖核酸交聯產物之研究。國立中正大學化學暨生物化學所碩士論文,2005。141. Nakano, T.; Terato, H.; Asagoshi, K.; Masaoka, A.; Mukuta, M.; Ohyama, Y.; Suzuki, T.; Makino, K.; Ide H. DNA-protein cross-link formation mediated by oxanine: a novel genotoxic mechanism of nitric oxide-induced DNA damage.
J. Biol. Chem. 278: 25264-25272; 2003.