跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/22 00:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:汪俊宏
研究生(外文):Chun-Hung Wang
論文名稱:N/A
論文名稱(外文):Computational Study for the Interaction of Serotonin and Fluoxetine
指導教授:李錫隆李錫隆引用關係
指導教授(外文):Shyi-Long Lee
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:92
中文關鍵詞:N/A
外文關鍵詞:ab initioDFTserotoninfluoxetinehydrogen bondbinding energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
  本研究中,我們使用ab initio(HF/6-31G**,HF/6-31+G*)與DFT(B3LYP/6-31+G*)的方法計算氟西汀與血清素的電子結構,並探討六個穩定的氟西汀-血清素複合物,以比較其幾何參數。因氟西汀為對掌異構物,探討作為抗憂鬱藥時不同異構物的重要性。我們並使用B3LYP/cc-pVTZ*與B3LYP/aug-cc-pVTZ 的方法在HF/6-31G* 與HF/6-31+G*求得的穩定結構下做單點計算,可對氫鍵強度做更佳的評估。在B3LYP/6-31+G*方法下並運用counterpoise 方法消除基組重疊誤差(basis set superposition error),以精確評估此複合物的結合能。另外在B3LYP/cc-pVTZ 的方法下求得血清素單體的頻率,並與van Mourik 與Emson 計算的結果做對比。以上工作提供理論與實驗上參考的數據,希冀對於此類的藥物-配體作用力有更深入的了解。
The electronic structure calculations have been performed for the complexes of serotonin and fluoxetine. We performed ab initio and density functional theory (DFT) methods (HF/6-31G**, HF/6-31+G* and B3LYP/6-31+G*) to discuss the six stable conformations of the serotonin-fluoxetine complex. S form and R form of fluoxetine have been considered since the significance of the chirality of fluoxetine is important for drug development of both enantiomers for different
indication s.a. depression and migraine. Single point energy calculations at B3LYP/cc-pVTZ and B3LYP/aug-cc-pVTZ levels on HF/6-31G** and HF/6-31+G* optimized geometries have also been carried out, respectively to better estimate the hydrogen bonding strengths. However, the calculated hydrogen bonding energies are also corrected for the basis set superposition error (BSSE) at B3LYP/6-31+G* method. Harmonic vibrational frequencies of serotonin monomer and fluoxetine monomer have been performed at B3LYP/cc-pVTZ method. The results obtained for the serotonin monomer has been compared to van Mourik and
Emson’s results. This work is to provide predictions and to help experimental and theoretical studies towards the understanding of such drug-ligand interaction.
Contents…………………………………………………………………I
List of tables…………………………………………………………III
List of figures………………………………………………………VI
中文摘要………………………………………………………………VII
Abstract…………………………………………………………………1
Introduction………………………………………………………………2
Computational methods…………………………………………………4
Results and Discussion…………………………………………………6
Chapter 1 Serotonin (5-hydroxytryptamine, 5-HT)………………6
1.1 Optimized geometry parameters………………………………6
1.2 Harmonic vibrational frequency………………………………12
Chapter 2 Fluoxetine…………………………………………………16
2.1 Optimized geometry parameters………………………………16
2.2 Harmonic vibrational frequency………………………………22
Chapter 3 Fluoxetine-serotonin complex…………………………25
3.1 HF/6-31G**……………………………………………………25
3.1.1 Serotonin in fluoxetine-serotonin complex……………25
3.1.2 Fluoxetine in fluoxetine-serotonin complex……………38
3.1.3 Hydrogen bonding parameters…………………………43
3.2 HF/6-31+G*……………………………………………………45
3.2.1 Serotonin in fluoxetine-serotonin complex……………45
3.2.2 Fluoxetine in fluoxetine-serotonin complex……………50
3.2.3 Hydrogen bonding parameters…………………………55
3.3 B3LYP/6-31+G*………………………………………………58
3.3.1 Serotonin in fluoxetine-serotonin complex………………58
3.3.2 Fluoxetine in fluoxetine-serotonin complex……………63
3.3.3 Hydrogen bonding parameters…………………………68
3.4 Binding energies………………………………………………71
Conclusion………………………………………………………………78
Reference………………………………………………………………82
(1) Alagona, G.; Ghio, C.; Nagy, P. I. J. Chem. Theory Comput. 2005, 1,
801-806
(2) Pratuangdejkul, J.; Jaudon, P.; Ducrocq, C.; Nosoongnoen, W.; Guerin,
G.; Conti, M.; Loric, S.; Launay, J.; Manivet, P. J. Chem. Theory
Comput. 2006, 2, 746-760
(3) Pisterzi, L. F.; Almeida, D. R. P.; Chass, G. A.; Torday, L. L.; Papp, J.
G.; Varro, A.; Csizmadia, I. G. Chem. Phys. Lett. 2002, 365, 542-551
(4) Alagona, G.; Ghio, C. J. Mol. Structure: THEOCHEM 2006, 769,
123-134
(5) van Mourik, T.; Emson, L. E. V. Phys. Chem. Chem. Phys. 2002, 4,
5863-5871
(6) Bayari, S.; Saglam, S.; Ustundag, H. F. J. Mol. Strcuture:
THEOCHEM 2005, 726, 225-232
(7) Neal, M. J. Medical Pharmacology at a Glance; Blackwell Publishing,
2005
(8) Burger’s: Medicinal Chemistry and Drug Discovery; Burger, A., John
Wiley & Sons, Inc., 2006
(9) www.ti.ubc.ca Therapeutics letters 2002, 45
(10) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, Jr., K. M.;
Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman,
P. A. J. Am. Chem. Soc. 1995, 117, 5179-5197
(11) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553
(12) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007-1023
(13) Davidson, E. R. Chem. Phys. Lett. 1996, 260, 514-518
(14) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652
(15) Volkov, A.; King, H. F.; Coppens, P. J. Chem. Theory Comput. 2006,
2, 81-89
(16) Langley, C. H.; Allinger, N. L. J. Phys. Chem. A 2003, 106,
5208-5216
(17) Aloisio, S.; Hintze, P. E.; Vaida, V. J. Phys. Chem. A 2003, 106,
363-370
(18) Ruckenstein, E.; Shulgin, I. L.; Tilson, J. L. J. Phys. Chem. A 2003,
107, 2289-2295
(19) Wetmore, S. D.; Schofield, R.; Smith, D. M.; Radom, L. J. Phys.
Chem. A 2001, 105, 8718-8726
(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin,
K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone,
V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg,
J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;
Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
(21) Pouchert, C. J. The Aldrich Library of Infrared Spectra; Aldrich
Chemical Company: Milwaukee, 1975
(22) Weinstein, H.; Zhang, D. Receptor models and ligand-induced
responses: new insights for structure-activity relations. In: QSAR and
Molecular Modeling: Concepts, pp. 497-507, Sanz, F., Giraldo, J. and
Manaut, F. (eds.) Prous Science publishers, Barcelona, 1995
(23) Roth, B. L.; Willins, D. L.; Kristiansen, K.; Kroeze, W. K. Pharmacol.
Ther. 1998, 79, 231-257
(24) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological
Structures; Springer-Verlag: Berlin, 1989
(25) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond: in Structural
Chemistry and Biology; Oxford Science Publications: Oxford, 1999
(26) Modeling the Hydrogen Bond; Smith, D. A., Ed.; ACS Symposium
Series No. 569; American Chemical Society, Washington, DC, 1994
(27) Schuster, P.; Beyer, A. Hydrogen Bonds; Springer-Verlag: Berlin,
1984
(28) Sponer, J.; Leszczynski, J.; Hobza, P. J. Biomol. Struct. Dyn. 1996,
14, 117-135
(29) Tsuzuki, S.; Luthi, H. P. J. Chem. Phys. 2001, 114, 3949-3957
(30) Timoshkin, A. Y.; Suvorov, A. V.; Bettinger, H. F.; Schaeffer, H. F. J.
Am. Chem. Soc. 1999, 121, 5687
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. Computational Study for the Interaction of Protonated Serotonin and Fluoxetine
2. 應用第一原理計算於摻鎳Cu6Sn5介金屬破裂韌性之研究
3. 奈米碳管分子結間電子傳輸與干涉現象之第一原理研究
4. 利用第一原理計算研究鈦酸鍶水分解光觸媒
5. 以密度泛函理論研究在二氧化釕(110)及二氧化銥(110)表面上NHx(x=0–3)、氮氣吸附以及氨之氧化反應
6. 氫分子和水分子基態能量的AbInitio計算
7. 鹼基(黃嘌呤、胸線嘧啶)配對物內相對氫鍵強度與芳香性的理論研究:動態學的研究
8. 理論化學之研究:1.由氨基丙二腈生成甘胺酸之反應機制 2.1,3-丁二烯與1,4-二氮-1,3-丁二烯進行共軛雙烯[四加二]環加成反應(Diels-Alder)時,位能曲面與分子軌域作用之關係
9. 含惰性元素之陰離子及分子的理論預測與Diels-Alder反應系統之理論模擬
10. Abinitio分子軌域與密度泛函數理論計算壹.氫化矽SiH2及等電子系統(AlH2-PH2+)之衍生物Singlet-Triplet能差研究。貳.質子化後,乙醯化合物及硫化乙醯化合物分子內互變異構研究。兼論質子化位置與
11. 甲醯胺及其衍生物的分子內和分子間及與水氨分子間的氫原子轉移理論計算研究
12. 乙二醇水溶液的分子動力模擬
13. 以abinitio與密度泛函理論對氫鍵系統及分子光譜之研究
14. 微量注射Fluoxetine於視丘皮內神經核對大花鼠腦中單胺類含量及「睡-醒」週期的影響
15. 微量注射Fluoxetine於視丘皮內神經核對大花鼠腦中單胺類含量及「睡-醒」週期的影響
 
無相關期刊