跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張智凱
研究生(外文):Chin-Kai Chang
論文名稱:利用DFT來研究甲醛線性寡聚合物的非線性光學活性
論文名稱(外文):The Nonlinear Optical Properties of Linear Formaldehyde Oligomers by Density Functional Theory
指導教授:李錫隆李錫隆引用關係
指導教授(外文):Shyi-Long Lee
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:95
語文別:英文
論文頁數:72
中文關鍵詞:甲醛非線性光學
外文關鍵詞:formaldehydeNonlinear Optical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文的主要工作在於研究甲醛分子線性寡聚合物的非線性光學性質的研究,並對該結果和梯形寡聚合物的結果做個比較。我們選用有現場方法(finite field approach)來估算靜態非線性光學係數(static hyperpolarizablity)並且使用Nakano 等人所提出的hyperpolarizabilty density analsis(HDA) 來觀察空間中電子對於β和γ值的貢獻情形。
在決定最佳化結構的部份,我們使用DFT(密度泛涵理論) 搭配數種基底函數(basis set)來與甲醛實驗值比較。得到的結果是B3LYP/6-31+G(d,p)此種組合與實驗值最接近並且利用此組合來得到 -(-H2CO-)n-,n=2~7的最佳化結構,該結構做為接下來的研究之用。
計算靜態非線性光學係數時,將C=O方向定為x方向,此方向βxxx and γxxx的貢獻為其主要。線性寡聚合物βxxx and γxxx 的趨勢表現則是隨著甲醛單體的增加而隨之增加和梯形寡聚合物γxxx 的趨勢相同,但是與梯形寡聚合物 βxxx呈現振盪的表現則有些不同。HDA中則用圖形來說明空間中電子對於非線性光學性質的貢獻情形。在比較非線性光學係數與甲醛單體數目的比值時,線性寡聚合物的值都比梯形寡聚合物的值來的大。
We investigate nonlinear optical properties of linear formaldehyde oligomers -(-H2CO-)n-,n=1~7 by using density functional theory calculation in comparison with those of the ladder formaldehyde oligomers . The geometries of the formaldehyde and its linear oligomers are optimized by the B3LYP using the 6-31+G(d,p) basis set. The finite-field approach(FF) could be used to calculate the static first and second hyperpolarizablitityβxxx and γxxx. The hyperpolarizability density analysis (HDA) provides pictorial and intuitive understanding of the spatial contribution to the static hyperpolarzability. The βxxx and γxxx values increase with number of formaldehyde (n) for the linear connection, but only γxxx value increase with n for the ladder connection. The NLO properties/n of the linear oligomers are greater than those of the ladder oligomers.
Abstract………….…………………………………....................I
中文摘要……………….………………………………………II
Contents………....…………………………………………….III
List of Tables………….……………………………………... IV
List of Figures…………..……………………………………VII

Chapter 1 Introduction………………………………………….1
1.1 Formaldehyde………………………………………………………...2
1.2 The NLO studies for the organic oligomers NLO……………..2
1.3 NLO…………………………………………………………………..3

Chapter 2 Methodology and Computation…………………….10
2.1 Density functional theory…………………………………………...11
2.2 Calculatin of hyperpolarizability……………………………………13
2.2-1 Derivative method……………………………………………...13
2.2-2 Finite-field approach…………………………………………...14
2.2-3 Hyperpolarizability density analysis…………………………...15

Chapter 3 Result and Discussion……………………………...19
3.1 Optimized Geometries of formaldehyde oligomers………………..20
3.2 Formaldehyde dimers…………………………………………........24
3.3 Linear formaldehyde oligomers (H2CO)n, n=3~7…...........………..31
3.4 NLO properties……………………………………………………...37
3.4.1 Field strength…………………………………………………...37
3.4.2 Finite-field approach…………………………………………....43
3.4.3 Basis set dependence of βxxx and γxxxx for (H2CO)2………….....43
3.4.4 Electron correlation dependence of βxxx andγxxxx for (H2CO)2…..
……………………………………………………………..45
3.5 Hyperpolarizability density analysis………………………….…...47
3.5.1 Spatial contributions to βzzz and γzzzz for (CH2O)n n=2-7…….49
3.2.4 Variations of the nonlinear optical properties and chain-length dependencies of linear oligomers and ladder oligomers Variations of the βzzz and γzzzz of formaldehyde oligomers for FF and HDA approaches………………………….........................................60

Chapter 4 Conclusion………….………………………………65

References………….………………………………………….68`

List of Tables

Table 2-1 General Schemes for Calculations of Optical Nonlinearity of Microscopic molecule……………………………………………..……11
Table 3-1 Selected optimization parameter and energy of formaldehyde monomer…………………………………….………………………….22
Table 3-2 Computed wave numbers (cm-1) for the C=O
stretching vibration and dipole moment (debye) of
CH2O…………………………….……………………………………...23
Table 3-3 Computed geometries of linear formaldehyde dimers………………………………………………………..……….....28
Table 3-4 Computed geometries of ladder formaldehyde dimer…………………………………………………………….………29
Table 3-5 Computed geometries of formaldehyde oligomers by B3LYP/
6-31+G(d,p)………………………………………..…………………...33





















List of Figures

Figure 1.2-1 Applications of nonlinear optical device………………4
Figure 1.2-2Scheme of second-harmonic generation in NLO material
(a) Description of SHG (b) Photon description of SHG………………….5
Figure 2.3-1 Schematic diagram of the first hyperpolarizability density
……………………………………………………………17
Figure 2.3-2 Schematic diagram of the second hyperpolarizability density
……………………………………………………………18
Figure 3.1-1 Molecular geometry of H2CO optimized by B3LYP using a 6-31+G(d,p) basis set.………………………………..…… ……………21
Figure 3.2-2 Molecular geometry of linear and ladder formaldehyde dimmers optimized by B3LYP using a 6-31+G(d,p) basis set………………………………………………………..27
Figure 3.3-1 Molecular geometry of linear formaldehyde oligomers optimized by B3LYP using a 6-31+G(d,p) basis set………………………………………………………..33
Figure 3.4.1.1 Variation of βzzz with field strength for formaldehyde oligomers by FF using B3LYP/6-31+G(d,p)…………………………………….38
Figure 3.4.1.2 Variation of βzzz with field strength for formaldehyde oligomers by HDA using B3LYP/6-31+G(d,p).…………………………………....39
Figure 3.4.1.3 Variation of γzxzz with field strength for formaldehyde oligomers by FF using B3LYP/6-31+G(d,p)…………………………………….40
Figure 3.4.1.4 Variation of γzxzz with field strength for formaldehyde oligomers by HDA using B3LYP/6-31+G(d,p)….
…………………………………………………………41
Figure 3.4.3.1 Variations in the βxxx of (H2CO)2 for various basis sets and electron correlation methods using field strength of 0.0025 au………...........................................................................47
Figure 3.4.3.2 Variations in the γxxxx of (H2CO)2 for various basis sets and electron correlation methods using field strength of 0.0025 au
………..............................................................................48
Figure 3.5-1 Contour plots of βxxx and γxxxx densities on the xy plane of (CH2O)2……………………………………………………………..53
Figure 3.5-2 Contour plots of βxxx and γxxxx densities on the xy plane of (CH2O)3……………………………………………………………...54

Figure 3.5-3 Contour plots of βxxx and γxxxx densities on the xy plane of (CH2O)4……………………………………………………………...55
Figure 3.5-4 Contour plots of βxxx and γxxxx densities on the xy plane of (CH2O)5……………………………………………………………...56
Figure 3.5-5 Contour plots of βxxx and γxxxx densities on the xy plane of (CH2O)6……………………………………………………………...57
Figure 3.5-6 Contour plots of βxxx and γxxxx densities on the xy plane of (CH2O)7……………………………………………………………...58
Figure 3.6-1 The static longitudinal first hyperpolarizability ,β, of linear and ladder oligomers -(CH2O)n- by B3LYP………………….….61
Figure 3.6-1 The static longitudinal second hyperpolarizability ,γ,
of linear and ladder oligomers -(CH2O)n- by B3LYP……………………………………………………………….….62
Figure 3.6-3 Chain-length dependency of longitudinal β /n (n: the number of formaldehyde units) for linear and ladder form by B3LYP…63
Figure 3.6-4 Chain-length dependency of longitudinal γ /n (n: the number of formaldehyde units) for linear and ladder form by B3LYP…………64
1.N. W. Howard and A. C. Legon, J. Chem. Phys. 88, 6793 (1988).
2.J. E. Rice, R. D. Amos, S. M. Colwell, N. C. Handy, and J. Sanz, J. Chem. Phys. 93, 8828 (1990).
3.L. Deng, T. Ziegler, and L. Fan, J. Chem. Phys. 99, 3823 (1993).
4.J. Wilkie and I. H. Williams, J. Chem. Soc. Perkin Trans. 2 1559 (1995).
5.M. Pecul, J. Leszczński and J. Sadlej, J. Chem. Phys. 112, 7930 (2000).
6.V. Branchadell and A. Oliva, J. Am. Chem. Soc. 113, 4132 (1991).
7.A. Nowek and J. Leszczński, J. Chem. Phys. 104, 1441 (1996).
8.H. Yang, Y.-H. Liau, and T.-M. Su, J. Phys. Chem. 99, 177 (1995).
9.L. Versluis and T. Ziegler, J. Chem. Phys. 88, 322 (1988).
10.J. S. Kwiatkowski and J. Leszczynski, Mol. Phys. 81, 119 (1994).
11.N. J. Harris, J. Phys. Chem. 99, 14689 (1995).
12.J. S. Kwiatkowski and J. Leszczynski, Int. J. Quantum Chem.: QCS 26, 421 (1992).
13.J. S. Kwiatkowski and J. Leszczynski, J. Mol. Spectrosc. 157, 540 (1993).
14.J. M. L. Martin, Chem. Phys. Lett. 242, 343 (1995).
15.S. Carter, N. C. Handy and J. Demaison, Mol. Phys. 90, 729 (1997).
16.S. Carter, N. Pinnavaia and N. C. Handy, J. Chem. Phys. 240, 400 (1995).
17.J. L. Duncan, Mol. Phys. 28, 1177 (1974).
18.M. M. Wohar and P. W. Jagodzinski, J. Mol. Spectrosc. 148, 13 (1991).
19.L. B. Harding and W. C. Ermler, J. Comput. Chem. 6, 13 (1985).
20.M. Majoube, P. Derreumaux, and G. Vergoten, XII Int. Conf. of Raman Spectr. 150 (1990).
21.K. Kondo and T. Oka, J. Phys. Soc. Jpn. 109, 9674 (1960).
22.B. Fabricant, D. Krieger and J. S. Mautner, J. Chem. Phys. 67, 1576 (1977).
23.J. K. Vaskonen, and M.H. Kunttu, J. Phys. Chem. A,107, 5881(2003)
24.T. Grutznerand and H. Hasse, J. Chem. Eng. Data, 49, 642 (2004)
25.N.I. Remediakis, F. Abild-Pedersen, and K. J. Norskov, J. Phys. Chem. B,108,14535(2004)
26.X. Zhang, S. Zou, B.L. Harding, and M. J. Bowman, J. Phys. Chem. A, 108 ,8980 (2004)
27.J. Troe, J. Phys. Chem. A.,109,8320(2005)
28.A. Karpfen, and S.E. Kryachko, J. Phys. Chem. A,109,8930(2005)
29.L. J. Deiner, D. H. Kang, and M.C. Friend, J.Phys.Chem.B,109, 8085 (2005)
30.A. Ohrn, and J.G.Karlstrom, J. Phys. Chem. A.;110,1934(2006)
31.T. H. Maiman, Nature, 187, 493 (1960)
32.P.A.Franken, A.E. Hill, C.W. Peters, G. Weinreich, Phys.Rev.Lett, 7,118(1961)
33.D.A.Parathenopoulos, P.M.Rentzepis, Science 245,843(1989)
34.T.M. Endtner,F.Effenberger, A.Harschuh, H. Port, J.Am. Chem. Soc. 2000,122,3037.
35.J. F. Walker, Formaldehyde (Reinhold Publishing Corporation, New York, 1944)
36.H.Y. Wu , A. Chaudhari , S. L. Lee J. Comput. Chem. 26, 1543 (2005)
37.J. B. Foresman, Exploring Chemistry with Electronic Structure Methods (Gaussian, Inc., Pennsylvania, 1993).
38.A. R. Leach, Molecular Modeling: Principles and Applications (Prentice-Hall, Inc., England, 2001).
39.M. Nakano and K. Yamaguchi, Chem. Phys. Lett. 206, 285 (1993).
40.M. Nakano, I. Shigemoto, S. Yamada, and K. Yamaguchi, J. Chem. Phys. 103, 4175 (1995).
41.S. Yamada, M. Nakano, I. Shigemoto, and K. Yamaguchi, Chem. Phys. Lett. 254, 158 (1996).
42.S. Yamada, M. Nakano, I. Shigemoto, S. Kiribayashi, and K. Yamaguchi, Chem. Phys. Lett. 267, 445 (1997).
43.S. Yamada, M. Nakano, and K. Yamaguchi, Chem. Phys. Lett. 276, 375 (1997).
44.M. Nakano, S. Yamada, and K. Yamaguchi, Chem. Phys. Lett. 306, 187 (1999).
45.M. Nakano, S. Yamada, and K. Yamaguchi, Chem. Phys. Lett. 311, 221 (1999).
46.M. Nakano, S. Yamada, and K. Yamaguchi, J. Phys. Chem. 103, 3103 (1999).
47.S. Yamada, M. Nakano, and K. Yamaguchi, J. Phys. Chem. 103, 7105 (1999).
48.M. Nakano, S. Yamada, and K. Yamaguchi, Chem. Phys. Lett. 321, 491 (2000).
49.M. Nakano, H. Fujita, M. Takahata, and K. Yamaguchi, J. Chem. Phys. 115, 1052 (2001).
50.M. Nakano, H. Fujita, M. Takahata, and K. Yamaguchi, J. Chem. Phys. 115, 6780 (2001).
51.M. Nakano, H. Fujita, M. Takahata, and K. Yamaguchi, J. Phys. Chem. A. 107,4157(2003)
52.M. Nakano,T. Nitta,K. Yamaguchi,B. Champagne, E. Botek, J. Phys. Chem. A. 108,4105(2004)
53.S.Yamada,M.Nakano,M.Takahata,R.Kishi,T.Nitta,K.Yamaguchi, J. Phys. Chem. A.108,4151(2004)
54.M.Nakano,R.Kishi,T.Nitta,T. Kubo,K.Nakasuji,K. Kamada,K. Ohta, B.Champagne,E. Botek,K. Yamaguchi, J. Phys. Chem. A. 109,885(2005)
55.A. P. Scott and L. Radom, J. Phys. Chem. 100, 16502 (1996)
56.P. M. Andersson and P. Uvdal, J. Phys. Chem. A. 109, 2937 (2005)
57.G. J. Hurst and M. Dupuis, Chem. Phys. Lett. 171, 201(1990)
58.B. Kirtman and M. Hasan, Chem. Phys. Lett. 151, 123 (1989)
59.Y.-T. Lin, Computational Studies of Structural Effects on Nonlinear Optical Responses of Some π-Conjugated Molecules (Master’s Thesis, National Chung Cheng University, 1996).
60.P. J. Hermann and J. Ducuing, J. appl. Phys,45,5100(1974)
61.L. J. Oudar, and S.D. Chemla, J. Chem. Phys., 66, 2664(1977)
62.R.S. Marder, L-T Cheng, G.B. Tiemann, C.A. Friedli, M. Blanchard-Desce, W.J.Perry, and J. Skindhoj, J. Science, 263, 511(1994)
63.M.J. Nunzi, and D. Grec, J. Appl. Phys., 62, 2198(1987)
64.F. Krausz, E.Winter, and G. Leising, Phys. Rev. B, 39, 3701(1989)
65.G. Pucetti, M. Blanchard-Desce, I. Ledoux, J.-M Lehn, and J. Zyss, J. Phys. Chem., 97, 9385(1993)
66.T. Wada, L. Wang, D. Fichou,H. Higuchi, J. Ojima, and H. Sasabe, Mol. Cryst. Liq. Cryst., 255, 149(1994)
67.Z. Sainudeen, P. C. Ray International Journal of Quantum Chemistry, 105, 348(2005)
68.L.R. Delton, Z.L. Liang, Z. Yang, S. Sun and B.Wu, Chem. Master.,8,2681(1996)
69.C. Heldmann and M. Warner, Macromolecules, ,31,3519(1998)
70.X. Zhan, Y.Liu D. Zhu,W. Huang, and Q. Guang J.Phys.Chem.B.,106,1884(2002)
71.S. Yitzchaik, S.D. Bella, P.M. Lundquist, G.K. Wong, and T.J. Marks J.Am.Chem.Soc. ,119,2995(1997)
72.M. Nakano, H. Kishi,T. Nitta, B. Champagne, E. Botek, and K. Yamaguchi Int. J. Quantum Chem.,102,702(2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 王岫林,〈由詩人之賦與辭人之賦探揚雄的文學觀〉,《孔孟月刊》1期,2004年9月,頁39-47。
2. 吳淑鈿,〈以文為詩的觀念嬗變〉,《中國文哲研究集刊》17期,2000年9月,頁237-262。
3. 呂兆歡,〈《揚雄的賦論與清人的回應》一文評析〉,《輔大中研所學刊》第十三期,2003年9月,頁122。
4. 胡幼峰,〈試論《唐詩別裁集》編選之得失〉,《古典文學》第十集,台北:台灣學生書局,1988年12月,頁327-358。
5. 張高評,〈破體與宋詩特色之形成──以「以文為詩」、「以議論為詩」、「以賦為詩」為例〉,《成大中文學報》2期,1994年2月,頁73-111。
6. 張高評,〈蘇黃「以書道喻詩」與宋代詩學之會通〉,《成大中文學報》5期,1997年5月,頁249-281。
7. 梁立中,〈賦概(先秦兩漢賦說)詮論〉,《東南學報》7期,1984年7月,頁15-54。
8. 陳美朱,〈論唐賦的兩極評價〉,《中國文化月刊》總第218期,1998年5月,頁97-116。
9. 陳國球,〈文學結構的生成、演化與接受:伏迪契卡的文學史理論〉(《中外文學》15卷8期,1987年1月),頁64-96。
10. 陳國球,〈試論唐七律於明復古詩論中的「正典化過程」〉,《中外文學》6期,1987年11月,頁64-117。
11. 楊松年,〈詩選的詩論價值──文學評論研究的另一個方向〉,《中外文學》5期,1981年10月,頁36-67。
12. 詹杭倫,〈宋代辭賦辨體論〉,《逢甲人文社會學報》7期,2003年11月,頁1-16。
13. 鄭毓瑜,〈文學典律與文化論述──中古文論中的兩種「原道」觀〉,《漢學研究》18卷2期,2000年12月,頁285-318。
14. 鄧國光,〈祝堯《古賦辨體》的賦論〉,《新亞學術集刊》第13期「賦學專輯」,香港:香港中文大學新亞書院出版,1994年,頁363-383。
15. 簡宗梧,〈生鏽的文學主環──賦〉(《國文天地》6期,1998年11月,頁7-11。