參考文獻
1. Fearon, E. R.; Vogelstein, B (1990) A genetic model for colorectal tumorigenesis. Cell. 61,759-767.
2. Poirier, M. C.; Santella, R. M.; Weston, A. (2000) Carcinogen macromolecular adducts and their measurement. Carcinogenesis. 21, 353-359.
3. Chen, H.-J.; Hong, C.-L. (2001) 內生的DNA加成產物之形成與其在體內含量之分析. Chemistry. 59, 299-310.
4. Chen, H.-J. (2002) 質譜在分析DNA加成產物之重要性與其在毒物學上之意義. Chemistry. 60, 189-209.
5. Miller, E. C.; Miller, J. A. (1966). Mechanisms of chemical carcinogenesis: nature of proximate carcinogens and interactions with macromolecules. Pharmacol. Rev., 18, 805-838.
6. Hemminki, K. (1993). DNA adducts, mutations and cancer. Carcinogenesis. 14, 2007-2012.
7. Frenando, R. C.; Nair, J.; Barbin, A; Miller, J.A.; Bartsch, H. (1996) Detection of 1,N6-ethenodeoxyadensoine and 3,N4–ethenodeoxycytidine by immunoaffinity/32P-postlabeling in liver and lung DNA of mice treated with ethyl carbamate (urethane) or its metabolites. Carcinogenesis. 17, 1711-1718.
8. Battaglia, R.; Conacher, H. B. S.; Page, B. D. (1990) Ethyl carbamate (urethane) in alcoholic beverages and foods: a review. Food Addit. Contam. 7, 477-496.
9. Ough, C. S. Ethyl carbamate in fermented beverages and foods. I. Naturally occurring ethyl carbamate. (1976) J Agric. Food Chem. 24, 323-328.
10. Creech, J. L. Jr.; Johnson, M. N. (1974) Angiosarcoma of liver in the manufacture of polyvinyl chloride. J. Occup. Med. 16, 150-151.
11. Ames, B. N.; Gold, L. S. (1991) Endogenous mutagens and the causes of aging and cancer. Mutat. Res. 250, 3-16.
12. Lindahl, T. (1993) Instability and decay of the primary structure of DNA. Nature. 362, 709-715.
13. Christians, F. C.; New comb, T. G.; Loeb, L. A. (1995) Potential sources of multiple mutations in human cancers. Prevent. Med. 24, 329-332.
14. Marnett, L. J. (2000) Oxyradicals and DNA damage. Carcinogenesis. 21, 361-370.
15. Ca det, J.; Delatour, T.; Douki, T.; Gasparutto, D.; Pouget, J. P.; Ravanat, J. L.; Sauvaigo, S. (1999) Hydroxyl radicals and DNA base damage. Mutat. Res. 424, 9-21.
16. Levine, R. L.; Yang, I. Y.; Hossain, M.; Pandya, G. A.; Grollman, A. P.; Moriya, M. (2000) Mutagenesis induced by a single 1,N6-ethenodeoxyadenosine adduct in human cells. Cancer. Res. 60, 4098-4104. 22.
17. Jacobsen, J. S.; Perkins, C. P.; Callahan, J. T.; Sambamurti, K.; Humayun, M. Z. (1989) Mechanisms of mutagenesis by chloroacetaldehyde. Genetics. 121, 213-222. 24.
18. Basu, A. K.; Wood, M. L.; Niedernhofer, L. J.; Ramos, L. A.; Essigmann, J. M. (1993) mutagenic and genotoxic effects of three vinyl chloride-induced DNA lesions: 1,N6-ethenoadenine, 3,N4-ethenocytosine, and 4-amino-5- (imidazol-2-yl)imidazole. Biochemistry. 2, 12793- 12801.
19. Zhang, W.; John son, F.; Grollman, A. P.; Shibutani, S. (1995) Miscoding by the exocyclic and related DNA adducts 3,N4-etheno-2-deoxy-cytidine, 3,N4-ethano-2-deoxycytidine, and 3-(2-hydroxyethyl)-2-deoxyuridine. Chem. Res. Toxicol. 8, 157-163.
20. Moriya, M.; Zhang, W.; John son, F.; Grollman, A. P. (1994) Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichiacoli and simian kidney cells. Proc. Natl. Acad. Sci. U. S. A. 91, 11899-11903.
21. Pandya, G. A.; Moriya, M. (1996) 1,N6-ethenodeoxyadenosine, a DNA adduct highly mutagenic in mammalian cells. Biochemistry. 35, 11487-11492.
22. Cheng, K. C.; Pres ton, B. D.; Cahill, D. S.; Dosanjh, M. K.; Singer, B.; Loeb, L. A. (1999) The vinyl chloride DNA derivative N2,3-ethenoguanine produced G®A transitions in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 88, 9974-9978.
23. Akasaka, S.; Guengeric,h F. P. (1999) Mutagenicity of site-specifically located 1,N2-ethenoguanine in Chinese hamster ovary cell chromosomal DNA. Chem. Res. Toxicol., 12, 501-507.
24. Kronberg, L.; Sjöholm, R.; and Karlsson, S. (1992) Formation of 3, N4-ethenocytidine, 1,N6-ethenoadenosine, and 1,N2-ethenoguanosine in reactions of mucochloric acid with nucleosides. Chem. Res. Toxicol. 5, 852-855.
25. Guengerich, F. P.; Crawford, W. M. Jr.; Watanabe, P. G. (1979). Activation of Vinyl Chloride to Covalently Bound Metabolites: Roles of 2-Chloroethylene Oxide and 2-Chloroacetaldehyde. Biochemistry. 18, 5177-5182.
26. Gedigk, P.; Müller, R.; Bechtelsheimer, H. (1975) Morphology of liver damage among polyvinyl chloride production workers. A report of 51 cases. Ann N Y Acad Sci. 246, 278-285.
27. Buffler, P. A.; Wood, S.; Eifler, C.; Suarez, L.; Kilian, D. J. (1979) Mortality experience of workers in a vinyl chloride monomer production plant. J Occup Med. 21, 195-203.
28. Guengerich F. P. (1992) Roles of the vinyl chloride oxidation products 1-chlorooxirane and 2-chloroacetaldehyde in the in vitro formation of etheno adducts of nucleic acid bases. Chem. Res. Toxicol.5, 2-5.
29. Zajdela, F.; Croisy, A.; Barbin, A.; Malaveille, C.; Tomatis, L.; Bartsch, H. (1980) Carcinogenicity of chloroethylene oxide, an ultimate reactive metabolite of vinyl chloride, and bis(chloromethyl)ether after subcutaneous administration and in initiation-promotion experiments in mice. Cancer. Res. 40, 352-356.
30. Ames, B. N.; Gold, L. S. (1991) Endogenous mutagens and the causes of aging and cancer. Mutat. Res. 250, 3-16.
31. Lindahl, T. (1993) Instability and decay of primary structure of DNA. Nature. 362, 709-715.
32. Chung, F.-L.; Chen, H.-J. C.; Nath, R. G. (1996) Lipid peroxidation as a potential endogenous source for the formation of exocyclic DNA ad ducts: a commentary. Carcinogenesis. 17, 2105- 2111.
33. Chung, F.-L.; Chen, H.-J. C. (1994) Formation of etheno adducts in re action of enals via autoxidation. Chem. Res. Toxicol. 7, 857-860.
34. Chen, H.-J. C.; Chung, F.-L. (1996) Epoxidation of trans-4-hydroxy-2-nonenal by fatty acid hydroperoxides and hydrogen peroxide. Chem. Res. Toxicol. 9, 306-312.
35. Chen, H.-J. C.; Gonzalez, F. J.; Shou, M.; Chung, F.-L. (1998) 2,3-Epoxy-4-hydroxynonanal, a potential lipid peroxidation product for etheno adduct formation, is not a substrate of human epoxide hydrolase. Carcinogenesis. 19, 939-943.
36. Chung, F.-L.; Chen, H.-J. C.; Guttenplan, J. B.; Nishikawa, A.; Hard, G. C. (1993) 2,3-Epoxy-4-hydroxynonanal as a potential tumor-initiating agent of lipid peroxidation. Carcinogenesis , 14, 2073-2077.
37. Jones, W. R.; Dedon, P. C. (1999) DNA oxidation as a source of endogenous electrophiles: Formation of ethenoadeneine adducts in γ-irradiated DNA. J. Am. Chem. Soc. 121, 9231-9232.
38. Loureiro, A. P.; Di Mascio, P.; Gomes, O. F.; Medeiros, M. H. (2000) trans,trans-2,4-Decadienal-induced 1,N2-etheno-2-deoxyguanosine adduct formation. Chem. Res. Toxicol.13, 601- 609.
39. Lee, S. H.; Oe, T.; Blair, I. A. (2001) Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science. 292, 2083-2086.
40. Lee, S. H.; Oe, T.; Blair, I. A. (2002) 4,5-Epoxy-2(E)-decenal-induced formation of 1,N6-etheno-2-deoxyadenosine and 1,N2-etheno-2-deoxyguanosine adducts. Chem. Res. Toxicol. 15, 300-304.
41. Nair, J.; Barbin, A.; Guichard, Y.; Bartsch, H. (1995) 1,N6-Ethenodeoxyadenosine and 3,N4-etheno-deoxycytidine in liver DNA from humans and untreated rodents detected by immunoaffinity/32P-postlabeling. Carcinogenesis. 16, 613- 617.
42. Nair, J.; Barbin, A.; Velic, I.; Bartsch, H. (1999) Etheno DNA-base adducts from endogenous reactive species. Mutat. Res. 424, 59-69.
43. Nair, J.; Sone, H.; Nagao, M.; Barbin, A.; Bartsch, H. (1996) Copper-dependent formation of miscoding etheno-DNA adducts in the liver of Long Evans Cinnamon (LEC) rats de- -veloping hereditary hepatitis and hepatocellular carcinoma. Cancer Res. 56, 1267-1271.
44. Nair, J.; Carmichael, P. L.; Fernando, R. C.; Phil lips, D. H.; Strain, A. J.; Bartsch, H. (1998) Lipid peroxidation-induced etheno-DNA adducts in the liver of patients with the genetic metal storage disorders Wilsons disease and primary hemochromatosis. Cancer Epidemiol. Biomarkers Prev. 7, 435-440.
45. Nair, J.; Vaca, C. E.; Velic, I.; Mutanen, M.; Valsta, L. M.; Bartsch, H. (1997) High dietary omega-6 poly unsaturated fatty acids drastically increase the formation of etheno-DNA base adducts in white blood cells of female subjects. Cancer Epidemiol. Biomarkers Prev. 6, 597-601.
46. Hillestrom, P. R., Covas, M. I., Poulsen, H. E. (2006) Effect of dietary virgin olive oil on urinary excretion of etheno–DNA adducts. Free Radic. Biol. Med. 41, 1133-1138.
47. Schmid, K.; Nair, J.; Winde, G.; Velic, I.; Bartsch, H. (2000) Increased levels of promutagenic etheno-DNA adducts in colonic polyps of FAP patients. Int. J. Cancer. 87, 1-4.
48. Nair, J.; Gal, A.; Tamir, S.; Tannenbaum, S. R.; Wogan, G. N.; Bartsch, H. (1998) Etheno adducts in spleen DNA of SJL mice stimulated to over produce nitric oxide. Carcinogenesis. 19, 2081-2084.
49. Bartsch, H.; Nair, J. (2000) New DNA-based biomarkers for oxidative stress and cancer chemo-prevention studies. Eur. J. Cancer. 36, 1229-1234.
50. Bartsch, H.; Nair, J.; Owen, R. W. (2002) Exocyclic DNA ad ducts as oxidative stress mark- ers in colon carcinogenesis: potential role of lipid peroxidation, dietary fat and antioxidants. Biol. Chem. 383, 915-921.
51. Singer, B.; Hang, B. (1997) What structural features determine repair enzyme specificity and mechanism in chemically modified DNA? Chem. Res. Toxicol. 10, 713-732.
52. Singer, B.; Antoccia, A.; Basu, A. K.; Dosanjh, M. K.; Fraenkel-Conrat, H.; Gallagher, P. E.; Kusmierek, J. T.; Qiu, Z. H.; Rydberg, B. (1992) Both purified human 1,N6-ethenoadenine-binding protein and purified human 3-methyladenine-DNA glycosylase act on 1,N6-ethenoadenine and 3-methyladenine. Proc. Natl. Acad. Sci. U.S.A. 89, 9386-9390.
53. Matijasevic, Z.; Sekiguchi, M.; Ludlum, D. B. (1992) Release of N2,3-ethenoguanine from chloroacetaldehyde-treated DNA by Escherichia coli 3-methyladenine DNA glycosylase II. Proc. Natl. Acad. Sci. U. S. A. 89, 9331-9334.
54. Hang, B.; Me dina, M.; Fraenkel-Conrat, H.; Singer, B. (1998) A 55-kDa protein isolated from human cells shows DNA glycosylase activity toward 3,N4-ethenocytosine and the G/T mismatch. Proc. Natl. Acad. Sci. U.S.A. 95, 13561-13566.
55. Saparbaev, M.; Laval, J. (1998) 3,N4-Ethenocytosine, a highly mutagenic adduct, is a primary substrate for Escherichia coli double-stranded uracil-DNA glycosylase and human mismatch-specific thymine-DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 95, 8508-8513.
56. Saparbaev, M.; Langouet, S.; Privezentzev, C. V.; Guengerich, F. P.; Cai, H.; Elder, R. H.; Laval, J. (2002) 1,N2-ethenoguanine, a mutagenic DNA adduct, is a primary substrate of Escherichia coli mismatch-specific uracil-DNA glycosylase and human alkyl purine-DNA-N-glycosylase. J. Biol. Chem. 277, 26987-26993.
57. Suzuki, J.; Inoue, Y.; Suzuki, S. (1995) Changes in the urinary excretion level of 8-hydroxyguanine by exposure to reactive oxygen-generating substances. Free Radic. Biol. Med. 18, 431-436.
58.Loft, S.; Poulsen, H. E. (1998) Estimation of oxidative DNA damage in man from urinary excretion of repair products. Acta Biochimica Polonica , 45, 133-144.
59. Cooke, M. S.; Lunec, J.; Evans, M. D. (2002) Progress in the analysis of urinary oxidative DNA damage. Free Radic. Biol. Med. 33, 1601-1614.
60. Kirkham, P. A.; Spooner, G.; Ffoulkes-Jones, C.; Calvez, R. (2003) Cigarette smoke triggers macrophage adhesion and activation: role of lipid peroxidation products and scavenger receptor. Free. Radic. Biol. Med. 35, 697-710.
61. Speina, E.; Zielińska, M.; Barbin, A.; Gackowski, D.; Kowalewski, J.; Graziewicz, M. A.; Siedlecki, J. A.; Oliński, R.; Tudek, B. (2003) Decreased repair activities of 1,N(6)-ethenoadenine and 3,N(4)-ethenocytosine in lung adenocarcinoma patients. Cancer. Res. 63, 4351-4357.
62. Singer, B.; Spengler, S. J., Chavez, F.; Kusmierek, J. T. (1987) The vinyl chloride-derived nucleoside, N2,3-ethenoguanosine, is a highly efficient mutagen in transcription. Carcinogenesis. 8, 745-747.
63. Yen, T. Y.; Holt, S.; Sangaiah, R.; Gold, A.; Swenberg, J.A. (1998) Quantitation of 1,N6-ethenoadenine in rat urine by immunoaffinity extraction combined with liquid chromatography/electrospray ionization mass spectrometry. Chem. Res. Toxicol. 11, 810-815.
64. Kayser, K., Andre, S., Bovin, N. V., Zeng, F.-Y. and Gabius, H.-J. (1997) Preneoplasia-associated expression of calcyclin and of binding sites forsynthetic blood group A/H trisaccharide-exposing neoglycoconjugates in human lung. Cancer Biochem. Biophys. 15, 235–243.
65. Hecht, S. S. (2002) Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet. Oncol. 3, 461–469.
66. Chen, H.-J. C.; Chiang, L.-C.; Tseng, M.-C.; Zhang, L. L.; Ni, J.; Chung, F.-L. (1999) Detection and quantification of 1, N6-ethenoadenine in human placental DNA by mass spectrometry. Chem. Res. Toxicol. 12, 1119-1126.
67. Fedtke, N.; Boucheron, J. A.; Walker, V. E.; Swenberg, J. A. (1990) Vinyl chloride-induced DNA ad ducts. II: Formation and persistence of 7-(2¢-oxoethyl)guanine and N2,3-ethenoguanine in rat tissue DNA. Carcinogenesis. 11, 1287- 1292.
68. Ham, A. J.; Ranasinghe, A.; Morinello, E. J.; Nakamura, J.; Upton, P. B.; Johnson, F.; Swenberg, J. A. (1999) Immunoaffinity /gas chromatography/ high -resolution mass spectrumetry method for the detection of N2,3-ethenoguanine. Chem. Res. Toxicol. 12, 1240-1246.
69. Morinello, E. J.; Ham, A.-J. L.; Ranasinghe, A.; Sangaiah, R.; Swenberg, J. A. (2001) Simultaneous quantitation of N2,3-ethenoguanine and 1,N2-ethenoguanine with an immunoaffinity/gas chromatography/high-resolution mass spectrometry assay. Chem. Res. Toxicol. 14, 327-334.
70. Liu, X.; Lovell, M. A.; Lynn, B. C. (2006) Detection and Quantification of Endogenous Cyclic DNA Adducts Derived from trans-4-Hydroxy-2-nonenal in Human Brain Tissue by Isotope Dilution Capillary Liquid Chromatography Nanoelectrospray Tandem Mass Spectrometry. Chem. Res. Toxicol. 19, 710-718.
71. Chen, H.-J. C.; Zhang, L.; Cox, J.; Cunningham, J. A.; and Chung, F.-L. (1998) DNA adducts of 2,3-epoxy-4-hydroxynonanal: Detection of 7-(1’,2-Dihydroxy-heptyl)-3H-imidazo[2,1,i]-purine and 1,N6-etheno- adenine by gas chromatography/negative ion chemicalionization/mass spectrometry. Chem. Res. Toxicol. 11, 1474-1480.
72. Chen, H.-J. C.; Lin, T.-C.; Hong, C.-L.; and Chiang, L.-C. (2001). Analysis of 3,N 4-ethenocytosine in DNA and in human urine by isotope dilution gas chromatography/negative ion chemical ionization/mass spectrometry. Chem. Res. Toxicol. 14, 1612-1619.
73. Gonzalez-Reche, L. M.; Koch, H. M.; Weiss, T.; Mu¨ ller, J.; Drexler, H.; and Angerer, J. (2002) Analysis of ethenoguanine adducts in human urine using high performance liquid chromatographytandem mass spectrometry. Toxicol. Lett. 134, 71-77.
74. Chen, H. J.; Chiang, L. C.; Tseng, M. C.; Zhang, L. L.; Ni, J.; Chung, F. L. (1999) Detection and quantification of 1,N(6)-ethenoadenine in human placental DNA by mass spectrometry. Chem Res Toxicol. 12, 1119-26.
75. Doerge, D. R.; Churchwell, M. I.; Fang, J. L.; Beland, F. A. (2000) Quantification of etheno-DNA adducts using liquid chromatography, on-line sample processing, and electrospray tandem mass spectrometry. Chem. Res. Toxicol. 13,1259-1264.
76. International Agency for Research on Cancer (1986) IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Volume 38: Tobacco Smoking, International Agency for Research on Cancer, Lyon, France.
77. Kadlubar, F. F.; Anderson, K. E.; Haussermann, S.; Lang, N. P.; Barone, G. W.; Thompson, P. A.; MacLeod, S. L.; Chou, M. W.; Mikhailova, M.; Plastaras, J.; Marnett, L. J.; Nair, J.; Velic, I.; and Bartsch, H. (1998) Comparison of DNA adduct levels associatedwith oxidative stress in human pancreas. Mutat. Res. 405, 125-133.
78. Gackowski, D.; Speina, E.; Zielinska, M.; Kowalewski, J.; Rozalski, R.; Siomek, A.; Paciorek, T.; Tudek, B.; and Olinski, R. (2003) Products of oxidative DNA damage and repair as possible biomarkersof susceptibility to lung cancer. Cancer. Res. 63, 4899-4902.
79. Heinecke, J. W. (1998) Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 141, 1–15.
80. Ischiropoulos, H. (1998) Biological Tyrosine Nitration:A Pathophysiological Function of Nitric Oxide and Reactive Oxygen Species. Arch. Biochem. Biophys. 356, 1–11
81. Harrison, J. E. Schultz, J. (1976) Studies on the Chlorinating Activity of Myeloperoxidase. J. Biol. Chem. 251, 1371–1374
82. Daugherty, A.; Dunn, J. L.; Rateri, D. L. and Heinecke, J. W. (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 94, 437–444.
83. Sugiyama, S.; Okada, Y.; Sukhova, G. K.; Virmani, R.; Heinecke, J. W. and Libby, P. (2001) Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am. J. Pathol. 158, 879–891.
84. klebanoff, S. J., andClark, R.A.(1978) North Biochemical Press , Amsterdam.
85. Hurst, J. K., and Barrette, W. C. (1989) Leukocytic oxygen activation and microbicidal oxidative toxins. CRC Crit. Rev. Biochem. Mol. Biol. 24, 271-328.
86. Kettle, A. J.; Winterbourn, C. C. (1997) Peroxynitrite and myeloperoxidase leave the same footprint in protein nitration. Redox. Rep. 3, 257-258.
87. Schraufstatter, J. H.; Quehenberger, O. and Cochrane, C. G.(1990) Mechanisms of hypochlorite injury of target cells. J.Clin. Invest. 85, 554-562.
88. Prutz, W. A. (1996) Hypochlorous acid interactions with thiols,nucleotides, DNA, and other biological substrates. Arch Biochem Biophys. 332, 110-120.
89. Hawkins, C. L. and Davis, M.J. (1998) Degradation of hyaluronic acid, poly- and monosaccharides, and model compounds by hypochlorite: evidence for radical intermediates and fragmentation. Free Radic.l Biol. Med. 24, 1396-1410.
90. Carr, A. C.; Winterbourn, C. C.; Blunt, J W.; Phillips, A. J.; Abell, A.D. (1997) Nuclear magnetic resonance characterization of 6 alpha-chloro-5 beta-cholestane-3 beta,5-diol formed from the reaction of hypochlorous acid with cholesterol. Lipids 32, 363-367.
91. Volf, I.; Roth, A.; Cooper, J.; Moeslinger, T.; Koller, E. (2000) Hypochlorite modified LDL are a stronger agonist for platelets than copper oxidized LDL. FEBS. Lett. 483, 155-159.
92. Halliwell, B.; Wasil, M.; Grootveld, M. (1987) Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. Implications for antioxidant protection in the inflamed rheumatoid joint. FEBS. Lett. 213, 15-18.
93. Prutz, W. A. (1998). Interactions of hypochlorous acid with pyrimidine nucleotides, and secondary reactions of chlorinated pyrimidines with GSH, NADH, and other substrates. Arch. Biochem. Biophys. 349, 183-191.
94. Prutz, W. A.; Kissner, R.; Koppenol, W. H.; Ruegger, H. (2000) On the irreversible destruction of reduced nicotinamide nucleotides by hypohalous acids. Arch. Biochem. Biophys. 380, 181-191.
95. Henderson, J. P.; Byun, J.; Heinecke, J. W. (1999) Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes produces 5-chlorocytosine in bacterial RNA. J. Biol. Chem. 274, 33440-33448.
96. Chen, H.-J. C.; Row, S.-W.; Hong, C.-L. (2002) Detection andquantification of 5-chlorocytosine in DNA by isotope dilution gas chromatography/negative ion chemical ionization/mass spectrometry. Chem. Res. Toxicol. 15, 262-268.
97. Byun, J.; Henderson, J. P.; Mueller, D. M.; Heinecke, J. W. (1999) 8-Nitro-2''-deoxyguanosine, a Specific Marker of Oxidation by Reactive Nitrogen Species, Is Generated by the Myeloperoxidase-Hydrogen Peroxide-Nitrite System of Activated Human Phagocytes. Biochemistry. 38, 2590-2600.
98. Eiserich J. P.; Cross C. E.; Jones A. D.; Halliwell B.; van der Vliet, A. (1996) Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J. Biol. Chem. 271, 19199-19208.
99. Whiteman M.; Spencer J. P.; Jenner A.; Halliwell B. (1999) Hypochlorous acid-induced DNA base modification: potentiation by nitrite: biomarkers of DNA damage by reactive oxygen species.Biochem. Biophys. Res. Commun. 257, 572-576.
100. Schmitt, D.; Shen, Z.; Zhang, R.; Colles, S. M.; Wu, W.; Salomon, R. G.; Chen, Y.; Chisolm, G. M.; Hazen, S. L. (1999) Leukocytes Utilize Myeloperoxidase-Generated Nitrating Intermediates as Physiological Catalysts for the Generation of Biologically Active Oxidized Lipids and Sterols in Serum. Biochemistry. 38, 16904-16915.
101. Panasenko O. M.; Briviba K, Klotz L. O.; Sies, H. (1997) Oxidative modification and nitration of human low-density lipoproteins by the reaction of hypochlorous acid with nitrite. Arch. Biochem. Biophys. 343, 254-259.
102. Ischiropoulos, H. (1998) Biological tyrosine nitration: A pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 356, 1-11.
103. Shishehbor M. H.; Aviles R. J.; Brennan M. L.; Fu X.; Goormastic M.; Pearce G. L.; Gokce N.; Keaney J. F. Jr.; Penn, M. S.; Sprecher D. L.; Vita, J. A.; Hazen, S. L. (2003) Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA 289, 1675–1680.
104. Ischiropoulos, H. (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem. Biophys. Res .Commun. 305, 776-783
105. Gaut, J. P.; Byun, J.; Tran, H.D.; Lauber, W. M.; Carrol, J.A.;Hotchkiss, R.S.; Belaaouaj, A.; Heinecke, J. W. (2002) Myeloperoxidase produces nitrationg oxidants in vivo. J. Clin. Invest. 109: 1311-1319
106. Koppenol W. H., Moreno J. J., Pryor W. A., Ischiropoulos H, Beckman J. S. (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5, 834-842.
107. Ischiropoulos, H,; Zhu, L,; Beckman, J. S. (1992) Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298, 446-451.
108. Lemercier, J. N.; Squadrito, G. L.; Pryor, W. A. (1995) Spin trap studies on the decomposition of peroxynitrite. Arch. Biochem. Biophys. 321, 31-39.
109. Beckman J. S.; Beckman T. W.; Chen, J.; Marshall, P. A.; Freeman, B. A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci U S A. 87,1620-1624.
110. Marla, S. S.; Lee, J.; Groves, J. T. (1997) Peroxynitrite rapidly permeates phospholipid membranes. Proc Natl Acad Sci U S A. 94, 14243-14248.
111. Denicola, A., Souza, J. M.; Radi, R. (1998) Diffusion of peroxynitrite across erythrocyte membranes. Proc Natl Acad Sci U S A. 95, 3566-2571.
112. Holzbecher, J., and Ryan, D. E. (1980) The rapid determination of total bromine and iodine in biological fluids by neutron activation Clin. Biochem. 13, 277-278.
113. Ramsey, P. G.; Martin, T.; Chi, E. and Klebanoff, S. J. Arming of mononuclear phagocytes by eosinophil peroxidase bound to Staphylococcus aureus. (1982) J. Immunol. 128, 415-420.
114. Weiss S. J.; Test, S. T.; Eckmann, C. M.; Roos, D.; Regiani, S. (1986) Brominating oxidants generated by human eosinophils. Science 234, 200-203.
115. Mayeno, A. N.; Curran, A. J.; Roberts, R. L.; Foote, C. S. (1989) Eosinophils preferentially use bromide to generate halogenating agents. J. Biol. Chem. 264, 5660-5668.
116. Thomas, E. L.; Bozeman, P. M.; Jefferson, M. M.; and King, C. C. (1995) Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines. J. Biol. Chem. 270, 2906-2913.
117. Wu, W.; Chen, Y.; d''Avignon, A.; Hazen, S. L. 3-Bromotyrosine and 3,5-dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil-dependent tissue injury in vivo. Biochemistry. 38, 3538-3548.
118. Shen, Z.; Mitra, S. N.; Wu, W.; Chen, Y.; Yang, Y,; Qin, J.; Hazen, S. L. (2001) Eosinophil peroxidase catalyzes bromination of free nucleosides and double-stranded DNA. Biochemistry 40, 2041-2051.
119. Ischiropoulos, H. (1998) Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 356,1-11.
120. Greenacre, S. A.; Ischiropoulos, H. (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic. Res. 34, 541-581.
121. MacMillan-Crow, L. A.; Crow, J. P.; Kerby, J. D.; Beckman, J. S.; Thompson, J. A. (1996) Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A. 93, 11853-11858.
122. Good, P. F.; Werner, P.; Hsu, A.; Olanow, C. W.; Perl, D. P. (1996) Evidence of neuronal oxidative damage in Alzheimer''s disease. Am J Pathol. 149, 21-28.
123. Smith, M. A.; Richey-Harris, P. L.; Sayre, L. M.; Beckman, J. S. and Perry, G. (1997) Widespread peroxynitrite-mediated damage in Alzheimer''s disease. J. Neurosci. 17, 2653–2657.
124. Savvides, S. N.; Scheiwein, M.; Bohme, C. C.; Arteel, G. E.; Karplus, P.A.; Becker, K. and Schirmer, R. H. (2002) Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J. Biol. Chem. 277, 2779-2784.
125. Souza, J. M.; Daikhin, E.; Yudkoff, M.; Raman, C. S. and Ischiropoulos, H. (1999) Factors determining the selectivity of protein tyrosine nitration. Arch. Biochem. Biophys. 371, 169-178.
126. Heinecke, J. W. (2000) Eosinophil-dependent bromination in the pathogenesis of asthma. J. Clin. Invest. 105, 1331-1332.
127. Wu, W.; Samoszuk, M. K.; Comhair, S. A.; Thomassen, M. J.; Farver, C. F.; Dweik, R. A.; Kavuru, M. S.; Erzurum, S. C.; Hazen, S. L. (2000) Eosinophils generate brominating oxidants in allergen-induced asthma. J. Clin. Invest. 105, 1455-1463.
128. MacPherson, J. C.; Comhair, S. A.; Erzurum. S. C.; Klein, D. F.; Lipscomb, M. F.; Kavuru, M. S.; Samoszuk, M. K.; Hazen, S. L. (2001) Eosinophils are a major source of nitric oxide-derived oxidants in severe asthma: characterization of pathways available to eosinophils for generating reactive nitrogen species. J. Immunol. 166, 5763-5772.
129. Citardi, M. J.; Song, W,; Batra, P. S.; Lanza, D. C.; Hazen, S. L. (2006) Characterization of oxidative pathways in chronic rhinosinusitis and sinonasal polyposis. Am. J. Rhinol. 20, 353-359.
130. Viera, L.; Ye, Y. Z.; Estevez, A. G.; Beckman, J. S. (1999) Immunohistochemical methods to detect nitrotyrosine. Methods Enzymol. 301, 373-381.
131. Kamisaki, Y.; Wada, K.; Nakamoto, K.; Kishimoto, Y.; Kitano, M.; Itoh, T. (1996) Sensitive determination of nitrotyrosine in human plasma by isocratic high-performance liquid chromatography. J Chromatogr B Biomed. Appl. 685, 343-347.
132. Frost, M. T.; Halliwell, B.; Moore, K. P. (2000) Analysis of free and protein-bound nitrotyrosine in human plasma by a gas chromatography/mass spectrometry method that avoids nitration artifacts. Biochem J. 345, 453-458.
133. Yi, D.; Ingelse, B. A.; Duncan, M. W.; Smythe, G. A. (2000) Quantification of 3-nitrotyrosine in biological tissues and fluids: generating valid results by eliminating artifactual formation. J. Am. Soc. Mass Spectrom. 11, 578-586.
134. Schwemmer, M.; Fink, B.; Köckerbauer, R.; Bassenge, E. (2000) How urine analysis reflects oxidative stress--nitrotyrosine as a potential marker. Clin. Chim. Acta. 297, 207-16.
135. Tsikas, D.; Mitschke, A.; Suchy, M. T.; Gutzki, F. M.; Stichtenoth, D. O. (2005) Determination of 3-nitrotyrosine in human urine at the basal state by gas chromatography-tandem mass spectrometry and evaluation of the excretion after oral intake. J Chromatogr. B Analyt. Technol. Biomed. Life Sci. 827, 146-56.
136. Orhan, H.; Vermeulen, N. P.; Tump, C.; Zappey, H.; Meerman, J. H. (2004) Simultaneous determination of tyrosine, phenylalanine and deoxyguanosine oxidation products by liquid chromatography-tandem mass spectrometry as non-invasive biomarkers for oxidative damage. J Chromatogr. B Analyt. Technol. Biomed. Life Sci. 799, 245-54.
137. Aldridge, R. E.; Chan, T.; van Dalen, C. J.; Senthilmohan, R.; Winn, M.; Venge, P. Town, G. I.; Kettle, A. J. (2002) Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics. Free Radic. Biol. Med. 33, 847-56.
138. Gaut, J. P.; Byun, J.; Tran, H. D.; Heinecke, J. W. (2002) Artifact-free quantification of free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in human plasma by electron capture-negative chemical ionization gas chromatography mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry. Anal. Biochem. 300, 252-259.
139. Wilson, S. E.; Kahn, R. S.; Khoury, J.; Lanphear, B. P. (2007) The role of air nicotine in explaining racial differences in cotinine among tobacco-exposed children. Chest 131, 856-862.
140. Wakefield, M.; Banham, D.; Martin, J.; Ruffin, R.; McCaul, K.; Badcock, N. (2000) Restrictions on smoking at home and urinary cotinine levels among children with asthma. Am. J. Prev. Med. 19, 188-92.
141. Hargreave, F. E.; Leigh, R. (1999) Induced sputum, eosinophilic bronchitis, and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 160, 53-57.
142. Sutherland, E. R.; Martin, R. J. (2003) Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma. J Allergy Clin Immunol. 112, 819-827.
143. Lowenstein, C. J., Dinerman, J. L., and Snyder, S.H.(1994)Nitric Oxide: A physiologic messenger. Ann. Intern. Med. 120, 227-237.
144. Ohshima, H., and Bartsch, H. (1994) Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res. 305, 253-264.
145. Wink, D. A., Vodovotz, Y., Laval, J., Laval, F., Dewhirst, M. W., and Mitchell, J. B. (1998) The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19, 711-721.
146. Wink, D. A., Kasprzak, K. S., Maragos, C. M., Elespuru, R. K., Misra, M., Dunams, T. M., Cebula, T. A., Koch, W. H., Andrews, A. W., Allen, J. S., and Keefer, L. K. (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 254, 1001-1003.
147. Nguyen, T., Brunson, D., Crespi, C. L., Penman, B. W., Wishnok, J. S., and Tannenbaum, S. R. (1992) DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc. Natl. Acad. Sci. U.S.A. 89, 3030-3034.
148. deRojas-Walker, T., Tamir, S., Ji, H., Wishnok, J. S., and Tannenbaum, S. R. (1995) Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA, Chem. Res. Toxicol. 8, 473-477.
149. Tamir, S., Burney, S., and Tannenbaum, S. R. (1996) DNA damage by nitric oxide. Chem. Res. Toxicol. 9, 821-827.
150. Suzuki, T., Yamaoka, R., Nishi, M., Ide, H., and Makino, K. (1996) Isolation and characterization of a novel product, 2''-deoxyoxanosine, from2''-deoxyguanosine ,oligodeoxynucleotide, and calf thymus DNA treated by nitrous acid and nitric oxide. J. Am. Chem. Soc. 118, 2515-2516
151. Ignairo, L. J.(1989)Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ. Res. 65, 1-21.
152. Kono, Y., Shibata, H., Adachi, K., and Tanaka, K. (1994) Lactate-dependent killing of Escherichia coli by nitrite plus hydrogen-peroxide: A possible role of nitrogen dioxide. Arch. Biochem. Biophys. 311, 153-159.
153. Klebanoff, S. J. (1993) Reactive nitrogen intermediates and antimicrobial activity: role of nitrite. Free Radical Biol. Med. 14, 351-360.
154. Moncada, S.(1999)Nitric oxide: discovery and impact on clinical medicine. J. Roy. Soc. Med. 92, 164-169.
155. Li , H., and Forstermann, U.(2000)Nitric oxide in the pathogenesis of vascular disease. J. Pathol. 190, 244-254.
156. Nijkamp, F. P., and Folkerts, G.(1997)Nitiric oxide: initiator and modulator. Clin. Exp. Allergy. 27, 347-350.
157. Ohshima, H., and Bartsch, H. (1994) Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res. 305, 253–264.
158. Tamir, S., and Tannenbaum, S. R. (1996) The role of nitric oxide (NO.) in the carcinogenic process Biochim. Biophys. Acta. 1288, 31–36
159. Wink, D. A., Vodovotz, Y., Laval, J., Laval, F., Dewhirst, M. W., and Mitchell, J. B. (1998) The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19, 711–721
160. Felley-Bosco, E. (1998) Role of nitric oxide in genotoxicity: implication of carcinogenesis. Cancer. Metastasis Rev. 17, 25–37
161. Beckman, J. S., and Koppenol, W. H. (1996) Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly. Am. J. Physiol. 271, C1424–C1437.
162. Beckman, J. S. (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol. 9, 836–844.
163. Koppenol, W. H., Moreno, J. J., Pryor, W. A., Ischiropoulos, H., and Beckman, J. S., (1999) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5, 834-842.
164. Suzuki, T., Ide, H., Yamada, M., Endo, N., Kanaori, K., Tajima, K., Morii, T., and Makino, K. (2000) Formation of 2''-deoxyoxanosine from 2''-deoxyguanosine and nitrous acid: mechanism and intermediates. Nucleic Acids Res. 28, 544-551.
165. Suzuki, T., Yoshida, M., Yamada, M., Ide, H., Kobayashi, M., Kanaori, K., Tajima, K., and Makino, K. (1998) Misincorporation of 2’-deoxyoxanosine 5’-triphosphate by DNA polymerases and its Implication for mutagenesis. Biochemistry. 37, 11592-11598.
166. Lucas, L. T., Gatehouse, D., and Shuker, D. E. (1999) Efficient nitroso group transfer from N-nitrosoindoles to nucleotides and 2’-deoxyguanosine at Physiological pH. J. Biol. Chem. 274, 18319-18326.
167. Glaser, R., and Son, M.-S. (1996) Pyrimidine ring opening in the unimolecular dediazoniation of guanine diazonium ion. an ab lnitio theoretical study of the mechanism of nitrosative guanosine deamination. J. Am. Chem. Soc. 118, 10942–10943.
168. Glaser, R., and Lewis, M. (1999) Single- and double-proton-transfer in the aggregate between cytosine and guaninediazonium ion. Org. Lett. 1, 273–276.
169. Glaser, R., Rayat, S., Lewis,M., Son,M.-S. and Meyer,S. (1999) Theoretical studies of DNA base deamination. 2. ab Initio study of DNA base diazonium ions and of their linear, unimolecular dediazoniation paths. J. Am. Chem. Soc. 121, 6108–611.
170. Suzuki, T., Yoshida, M., Yamada, M., Ide, H., Kobayashi, M., Kanaori, K., Tajima, K., and Makino, K. (1998) Misincorporation of 2''-deoxyoxanosine 5''-triphosphate by DNA polymerases and its implication for mutagenesis. Biochemistry 37, 11592-11598.
171. Suzuki, T., Matsumura, Y., Ide, H., Kanaori, K., Tajima, K., and Makino, K. (1997) Deglycosylation susceptibility and base-pairing stability of 2''-deoxyoxanosine in oligodeoxynucleotide. Biochemistry 36, 8013-8019.
172. Nakano, T., Terato, H., Asagoshi, K., Masaoka, A., Mukuta, M., Ohyama, Y., Suzuki, T., Makino, K., and Ide, H. (2003) DNA-protein cross-link formation mediated by oxanine: a novel genotoxic mechanism of nitric oxide-induced DNA damage. J. Biol. Chem. 278, 25264-25272.
173. Suzuki, T., Yamada, M., Ide, H., Kanaori, K., Tajima, K., Morii, T., and Makino, K. (2000) Identification and characterization of a reaction product of 2''-deoxyoxanosine with glycine. Chem. Res. Toxicol. 13, 227-230.
174. Hitchcock, T. M., Dong, L., Connor, E. E., Meira, L. B., Samson, L. D., Wyatt, M. D., and Cao, W. (2004) Oxanine DNA glycosylase activity from mammalian alkyladenine glycosylase, J. Biol. Chem. 279, 38177-38183.
175. Terato, H., Masaoka, A., Asagoshi, K., Honsho, A., Ohyama, Y., Suzuki, T., Yamada, M., Makino, K., Yamamoto, K., and Ide, H. (2002) Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid. Nucleic Acids Res. 30, 4975-4984.
176. Hitchcock, T. M., Gao, H., and Cao, W. (2004) Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V, Nucleic Acids Res. 32, 4071-4080.
177. Nakano, T., Katafuchi, A., Shimizu, R., Terato, H., Suzuki, T., Tauchi, H., Makino, K., Skorvaga, M., Van Houten, B., and Ide, H. (2005) Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress. Nucleic Acids Res. 33, 2181-2191
178. 謝家榮,蛋白質與去氧核糖核酸交聯產物之研究。國立中正大學化學暨生物化學所碩士論文,2005。179. Chen, H. J., Hsieh, C. J., Shen, L. C., Chang, C. M. (2007) Characterization of DNA--protein cross-links induced by oxanine: cellular damage derived from nitric oxide and nitrous acid. Biochemistry 46, 3952-3965.
180. 沈塛卿,Oxanine與蔓皏?amp;#32957;交聯產物之鑑定。國立中正大學化學暨生物化學所碩士論文,2006。