跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/03 06:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃鴻隆
研究生(外文):Hung-Lung Huang
論文名稱:黏滯性流體中有關拉普拉斯成長的幾個問題
論文名稱(外文):Selected Topics on Laplacian Growth in Viscous Fluids
指導教授:杜明憲
指導教授(外文):Ming-Hsien Tu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:98
中文關鍵詞:黏滯性流體拉普拉斯成長Hele-Shaw流體量子霍爾液滴Darcy定律。
外文關鍵詞:Q.H. dropletHele-Shaw fluidsLaplace growthviscous fluidsDarcy law .
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在黏滯性流體中的拉普拉斯成長問題,我們選擇Hele-Shaw流體和量子霍爾液滴來探論。在Hele-Shaw流體中,由於流體的不可壓縮性,其流速滿足Darcy定律。考慮無表面張力的情況下,界面解可由弦方程式決定。雖然大多數情況的界面會形成"尖端(cusp)",
但也存在少數穩態的指狀解。在加入表面張力修正後,將可避免尖端的形成,並可由保角映射定理得到界面隨時間演化的方程式。因一方面,量子霍爾液滴的形狀及成長和Hele-Shaw流體很像,其界面並無表面張力,所以隨著液滴的變大其形狀最後會形成尖端。利用Normal矩陣模型,量子霍爾液滴的形變及成長問頭,可視為磁性雜質中的A-B效應(Aharonove-Bohm effect)與量子化的Darcy定律。
Using Hele-Shaw fluid and quantum Hall droplet, we studied problems of the Laplacian growth in viscous fluids. Because of its incompressibility, the local velocity of the Hele-Shaw fluid must obey Darcy Law. With zero-surface tension, the interface equation can be determined by solving the string equation. Although the most of the solutions formed "cusp", there exist a few special solutions such as finger solutions that do not go to cusp. With nonzero-surface tension, the time evolution of the interface can be obtained by the conformal mapping theory without forming cusp. Besides, the shape and the growth of quantum Hall droplet are very much alike to the Hele-Shaw fluid
with zero-surface tension. In the end, the growth of the droplet will cause the cusp to form. The deformation and growth problems of the quantum Hall droplet can be regard as the A-B effect in magnetic impurities and quantized
Darcy Law.
致謝------------------------------------vii
摘要-------------------------------------ix
1 導論--------------------------------------1
2 二維黏滯性流體-Saffman-Taylor問題---------7
3 速度圖解法-------------------------------15
4 保角映射法-------------------------------27
5 矩陣模型---------------------------------37
6 整數量子霍爾流體-------------------------53
7 總結-------------------------------------67
附錄-------------------------------------71
[1] Ahlfors, L. V., Complex Analysis, McGraw-Hill, 3rd. edition (1979)
[2] Agam, O., Bettelheim, E.,Wiegmann, P. B., Zabrodin, A., Viscous Fingering
and the Shape of an Electronic Droplet in the Quantum Hall Regime, Phys.
Rev. Lett. 88, 236801 (2002)
[3] Bensimon, D., Stability of viscous fingering, Phys. Rev. A 33, 1302 (1986)
[4] Bettelheim, E., Agam, O., Zabrodin, A., Wiegmann, P., Singular limit of Hele-
Shaw flow and dispersive regularization of shock waves, Phys. Rev. Lett. 95,
244502 (2005)
[5] Bensimon, D., Kadanoff, Leo P., Liang,S., Shraiman, Boris I., and Tang, C.,
Viscous flows in two dimensions, Rev. Mod. Phys. 58, 977 (1986)
[6] Casademunt, J., Viscous fingering as a paradigm of interfacial pattern formation:
recent results and new challenges, Chaos 14, 809 (2004)
[7] Chuoke, R. L., Meurs, P., Poel, C., The instability of slow, immiscible, viscous
liquid-liquid displacements in permeable media, Tran. Am. Inst. Min. 216, 188
(1959)
[8] Chau, Ling-Lie, Yu, Yue, Unitary polynomials in normal matrix models and
wave functions for the fractional quantum Hall effects, Phys. Lett. A 167, 452
(1992)
[9] Einstein, A., Investigation on the theory of the Brownian movement, Ann. d.
Phys. 17, 549 (1905)
[10] Davis, P. J., The Schwarz Function and Its Applications, Carus Math. Monographs
17, The Math. Soc. of America, Washington (1974)
[11] DeGregoria, A. J., Schwartz, L. W., Saffman-Taylor Finger Width at Low Inerfacial
Tension, Phys. Rev. Lett. 58, 1742 (1987)
[12] Hall, E. H., On a new action of the magnet on electric currents, Amer. J. Math.
2, 287 (1879)
[13] Howison, S. D., Fingering in hele-shaw cells, J. Fluid Mech. 167, 439 (1986)
[14] Howison, S., The Hele-Shaw Problem 1898-2004 , British Applied Mathmatics
Colloquium, http://www.maths.ox.ac.uk/ howison
[15] Halsey, T. C., Diffusion-Limited Aggregation: A Model for Pattern Formation,
PHYSICS TODAY, http://www.physicstoday.org/vol-53/iss-11/p36.html
[16] Hele-Shaw, H. S., The flow of water, Nature 58, 33 (1898)
[17] Hughes, T. l., Klironomos, A. D., Dorsey, A. T., “Fingere” Patterns in Electron
Droplets in Nonuniform Magnetic Fields, Phys. Rev. Lett. 90,196802 (2003)
[18] Klitzing, K. vna, Dorda, D., Pepper, M., Phys. Rev. Lett. 45, 494 (1980)
[19] Kessler, D. A., Levine, H., Stability of finger patterns in Hele-Shaw cells, Phys.
Rev. A 32, 1930 (1985)
[20] Kleman, M., Lavrentovich, O. D., Soft Matter Physics, Springer Verlag (2003)
[21] Laughlin, R. B., Quantized Hall conductivity in two dimensions, Phys. Rev. B
23 , 5632 (1981)
[22] Laughlin, R. B., Anomalous Quantum Hall Effect: An Incompressible Quantum
Fluid with Fractionally Charged Excitations, Phys. Rev. Lett. 50 1395 (1983)
[23] Liang, S., Random-walk simulations of flow in Hele Shaw cells, Phys. Rev. A
33, 2663 (1986)
[24] Kai S Lam, Topics in Contemporary Mathematical Physics, World Scientific
(2003)
[25] Landau, L. D., Lifshitz, E. M., Fluid Mechanics, 2nd edition, Pergamon Press
(1987)
[26] Meakin, P., Fractals, scaling and growth far from equilibrium, Cambridge University
Press, Cambridge (1998)
[27] Maher, J. V., Development of Viscous Fingering Patterns, Phys. Rev. Lett. 54,
1498 (1985)
[28] Mehta, M.L., Random Matrices, Academic Press , Boston (1991)
[29] MacDonald, A. H., Introduction to the physics of the quantum Hall regime, in
“Mesoscopic Quantum Physics”, Elsevier, 659-720 (1994)
[30] Witten Jr, T. A., Sander, L. M., Diffusion-Limited Aggregation, a Kinetic
Critical Phenomenon, Phys. Rev. Lett. 47, 1400 (1981)
[31] Mineev-Weinstein, M., Wiegmann, P.B., Zabrodin, A., Integrable Structure of
Interface Dynamics, Phys. Rev. Lett. 84, 5106 (2000)
[32] Shraiman, B., Bensimon, D., Singularities in nonlocal interface dynamics, Phys.
Rev. A 30, 2840 (1984)
[33] Simmons, J. A., Hwang, S. W., Tsui, D. C., Wei, H. P., Engel, L. W., Shayegan,
M., Resistence fluctuations in the integral-and fractional-quantum-Hell-effect
regimes, Phys. Rev. B 44, 12933 (1991)
[34] Saffman, P. G., Taylor, G. I., Proc. R. Soc. London, Ser. A 245, 312 (1958)
[35] Tsui, D. C., Stormer, H. L., Gossard, A. c., Phy. Rev. Lett. 48, 1559 (1982)
[36] Tabeling, P., Libchaber, A., Film draining and the Saffman-Taylor problem,
Phys. Rev. A 33, 794 (1986)
[37] Teodorescu, R., Zabrodin, A., Wiegmann, P., Unstable Fingering Patterns of
Hele-Shaw Flows as a Dispersionless Limit of the Kortweg-de Vries Hierarchy,
Phys. Rev. Lett. 95, 044502 (2005)
[38] Vasconcelos, G. L., Exact solutions for N steady fingers in a Hele-Shaw cell,
Phys. Rev. E 58, 6858 (1998)
[39] Wiegmann, P., Aharonov-Bohm Effect in the Quantum Hall Regime and fingering
instability, arXiv:cond-mat/0204254 (2002)
[40] Wiegmann, P. B., Zabrodin, A., Conformal maps and integrable hierarchies,
Commun. Math. Phys. 213, 523 (2000)
[41] Wiegmann, P. B., Zabrodin, A., Large N expansion of the 2D Dyson gas, J.
Phys. A: Math. Gen. 39, 8933 (2006)
[42] Zabrodin, A., Matrix models and growth processes: from viscous flows to the
quantum Hall effect, in “Applications of Random Matries in Physics”, Les
Houches summer school 2004, arXiv:hep-th/0412219
[43] Zhao, H., Maher, J. V., Associating-polymer effects in a Hele-Shaw experiment,
Phys. Rev. E 47, 4278 (1993)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文