|
[1] Ahlfors, L. V., Complex Analysis, McGraw-Hill, 3rd. edition (1979) [2] Agam, O., Bettelheim, E.,Wiegmann, P. B., Zabrodin, A., Viscous Fingering and the Shape of an Electronic Droplet in the Quantum Hall Regime, Phys. Rev. Lett. 88, 236801 (2002) [3] Bensimon, D., Stability of viscous fingering, Phys. Rev. A 33, 1302 (1986) [4] Bettelheim, E., Agam, O., Zabrodin, A., Wiegmann, P., Singular limit of Hele- Shaw flow and dispersive regularization of shock waves, Phys. Rev. Lett. 95, 244502 (2005) [5] Bensimon, D., Kadanoff, Leo P., Liang,S., Shraiman, Boris I., and Tang, C., Viscous flows in two dimensions, Rev. Mod. Phys. 58, 977 (1986) [6] Casademunt, J., Viscous fingering as a paradigm of interfacial pattern formation: recent results and new challenges, Chaos 14, 809 (2004) [7] Chuoke, R. L., Meurs, P., Poel, C., The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media, Tran. Am. Inst. Min. 216, 188 (1959) [8] Chau, Ling-Lie, Yu, Yue, Unitary polynomials in normal matrix models and wave functions for the fractional quantum Hall effects, Phys. Lett. A 167, 452 (1992) [9] Einstein, A., Investigation on the theory of the Brownian movement, Ann. d. Phys. 17, 549 (1905) [10] Davis, P. J., The Schwarz Function and Its Applications, Carus Math. Monographs 17, The Math. Soc. of America, Washington (1974) [11] DeGregoria, A. J., Schwartz, L. W., Saffman-Taylor Finger Width at Low Inerfacial Tension, Phys. Rev. Lett. 58, 1742 (1987) [12] Hall, E. H., On a new action of the magnet on electric currents, Amer. J. Math. 2, 287 (1879) [13] Howison, S. D., Fingering in hele-shaw cells, J. Fluid Mech. 167, 439 (1986) [14] Howison, S., The Hele-Shaw Problem 1898-2004 , British Applied Mathmatics Colloquium, http://www.maths.ox.ac.uk/ howison [15] Halsey, T. C., Diffusion-Limited Aggregation: A Model for Pattern Formation, PHYSICS TODAY, http://www.physicstoday.org/vol-53/iss-11/p36.html [16] Hele-Shaw, H. S., The flow of water, Nature 58, 33 (1898) [17] Hughes, T. l., Klironomos, A. D., Dorsey, A. T., “Fingere” Patterns in Electron Droplets in Nonuniform Magnetic Fields, Phys. Rev. Lett. 90,196802 (2003) [18] Klitzing, K. vna, Dorda, D., Pepper, M., Phys. Rev. Lett. 45, 494 (1980) [19] Kessler, D. A., Levine, H., Stability of finger patterns in Hele-Shaw cells, Phys. Rev. A 32, 1930 (1985) [20] Kleman, M., Lavrentovich, O. D., Soft Matter Physics, Springer Verlag (2003) [21] Laughlin, R. B., Quantized Hall conductivity in two dimensions, Phys. Rev. B 23 , 5632 (1981) [22] Laughlin, R. B., Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Phys. Rev. Lett. 50 1395 (1983) [23] Liang, S., Random-walk simulations of flow in Hele Shaw cells, Phys. Rev. A 33, 2663 (1986) [24] Kai S Lam, Topics in Contemporary Mathematical Physics, World Scientific (2003) [25] Landau, L. D., Lifshitz, E. M., Fluid Mechanics, 2nd edition, Pergamon Press (1987) [26] Meakin, P., Fractals, scaling and growth far from equilibrium, Cambridge University Press, Cambridge (1998) [27] Maher, J. V., Development of Viscous Fingering Patterns, Phys. Rev. Lett. 54, 1498 (1985) [28] Mehta, M.L., Random Matrices, Academic Press , Boston (1991) [29] MacDonald, A. H., Introduction to the physics of the quantum Hall regime, in “Mesoscopic Quantum Physics”, Elsevier, 659-720 (1994) [30] Witten Jr, T. A., Sander, L. M., Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon, Phys. Rev. Lett. 47, 1400 (1981) [31] Mineev-Weinstein, M., Wiegmann, P.B., Zabrodin, A., Integrable Structure of Interface Dynamics, Phys. Rev. Lett. 84, 5106 (2000) [32] Shraiman, B., Bensimon, D., Singularities in nonlocal interface dynamics, Phys. Rev. A 30, 2840 (1984) [33] Simmons, J. A., Hwang, S. W., Tsui, D. C., Wei, H. P., Engel, L. W., Shayegan, M., Resistence fluctuations in the integral-and fractional-quantum-Hell-effect regimes, Phys. Rev. B 44, 12933 (1991) [34] Saffman, P. G., Taylor, G. I., Proc. R. Soc. London, Ser. A 245, 312 (1958) [35] Tsui, D. C., Stormer, H. L., Gossard, A. c., Phy. Rev. Lett. 48, 1559 (1982) [36] Tabeling, P., Libchaber, A., Film draining and the Saffman-Taylor problem, Phys. Rev. A 33, 794 (1986) [37] Teodorescu, R., Zabrodin, A., Wiegmann, P., Unstable Fingering Patterns of Hele-Shaw Flows as a Dispersionless Limit of the Kortweg-de Vries Hierarchy, Phys. Rev. Lett. 95, 044502 (2005) [38] Vasconcelos, G. L., Exact solutions for N steady fingers in a Hele-Shaw cell, Phys. Rev. E 58, 6858 (1998) [39] Wiegmann, P., Aharonov-Bohm Effect in the Quantum Hall Regime and fingering instability, arXiv:cond-mat/0204254 (2002) [40] Wiegmann, P. B., Zabrodin, A., Conformal maps and integrable hierarchies, Commun. Math. Phys. 213, 523 (2000) [41] Wiegmann, P. B., Zabrodin, A., Large N expansion of the 2D Dyson gas, J. Phys. A: Math. Gen. 39, 8933 (2006) [42] Zabrodin, A., Matrix models and growth processes: from viscous flows to the quantum Hall effect, in “Applications of Random Matries in Physics”, Les Houches summer school 2004, arXiv:hep-th/0412219 [43] Zhao, H., Maher, J. V., Associating-polymer effects in a Hele-Shaw experiment, Phys. Rev. E 47, 4278 (1993)
|