跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張晉誠
研究生(外文):Jin-Cheng Zhang
論文名稱:雙團聯式共聚物於高分子發光二極體之研究
論文名稱(外文):Polymer light emitting diodes based on diblock copolymer
指導教授:釣峸湯兆崙
指導教授(外文):Chia-Chen HsuJaw-Luen Tang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:82
中文關鍵詞:奈米金高分子發光二極體有機發光二極體雙團聯式共聚物
外文關鍵詞:PLEDdiblock copolymergold nanoparticles
相關次數:
  • 被引用被引用:5
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本論文量測含奈米金雙團聯式共聚物PS-b-PI-Au及雙團聯式共聚物PS-b-PI的各項性質,並研究將其應用於高分子發光二極體中的可行性。所用結構為ITO/PEDOT/PS-b-PI or PS-b-PI-Au/PFO/Ca/Al,皆以ITO當陽極、PEDOT當電洞傳輸層、PFO當發光層。
我們以Ca/Al當陰極,將PS-b-PI-Au加入PEDOT和PFO當中,經由不同濃度測試,雖然可使元件的電子電洞結合效率提高,但也導致電子、電洞電流注入變較低,我們推測導致電流變小的原因有二:(1)可能因奈米金在表面所造成的粗操效應,導致元件電阻值增大,電流下降。(2)因為電流多流經一層PS-b-PI-Au,而造成相同電壓下,電流值降低。結合效率提高,但亮度並未增加的原因,我們推測是:(1)元件的電子,電洞都注入太少,導致電子電洞結合率雖提高,但亮度卻沒增加。(2)因為光需多傳輸PS-b-PI-Au層,導致折射次數增加,光亮度變小。
實驗中我們也使用PS-b-PI加入PEDOT和PFO當中,由能帶圖,我們發現PS-b-PI具有適度阻擋電洞的效果,且其在可見光區無任何吸收波段。不同濃度的實驗結果顯示,當重量百分濃度為1.5%時,元件具有最佳的亮度4922(cd/m2),以及最佳的效率1.3(cd/A) ,比沒加PS-b-PI層的結構,亮度高出1.6倍、效率高出1.44倍。
-b-PI層的結構,亮度高出1.6倍、效率高出1.44倍。
Abstract
Various physical properties of a polystyrene-b-polyisoprene diblock copolymer chemisorption with gold nanoparticles (PS-b-PI-Au) and a polystyrene-b-polyisoprene (PS-b-PI) diblock copolymer were investigated, and the results were used to study the feasibility of empolying the polymer thin film as a hole-block interlayer for a polymer light emitting diode (PLED) device. The design of blue PLED divice studied in this work was structured with the layout ITO/PEDOT/PS-b-PI or PS-b-PI-Au/PFO/Ca/Al, in which ITO was used as an anode, Ca/Al as a cathode, PEDOT as a polymeric hole transporting layer, and PFO as an emitting layer.

Studies of adding differnet concentrations of PS-b-PI-Au layer bewteen PEDOT and PFO revealed that although the added interlayer increased electron-hole recombination rate, it decreased electron-hole injection rate as well. There are two possible casuses for this problem: (1) a non-uniform and rough surface from the size effect of nanogold paricles leads to an increase of resisteance and a decrease of current of the device; (2) an increase of current passing through the added interlayer results in a decrease in device current at the same applied voltage. The possible causes for the decrease of luminous efficieny include (1) a decrease in numbers of electron-hole pairs from the fast recominbation rate leading to a decrese of luminescence of the device, and (2) an increase of the emitting light through the added interlayer resulting in a decrease of overall luminescence.

The similar studies of adding differnet concentrations of PS-b-PI layer bewteen PEDOT and PFO show that PS-b-PI layer can prevent the fast recombination of excitons at the PEDOT interface, which results in a larger increase in the luminous and current efficiency of the devices. Measured energy gap of PS-b-PI thin film indicated that it can be empolyed as a hole-blcokinb layer. Absorption spectra of the PS-b-PI thin film show that no visible light was found to emit from this layer. The maximum brightness and the maximum current efficiency of the PLED device, using 1.5 wt% PS-b-PI, are found to be 4922(cd/m2) and 1.30 (cd/A), respectively, exhibiting a 1.6 times of brightness and a 1.44 times of current efficiency than that of PLED without a PS-b-PI layer. The preliminary results presented here indeed demonstrate that PS-b-PI can be used as a hole-block layer to improve the luminous efficiency and lifetime performance.
目 錄
第一章 緒 論……………………………………………1
1-1有機發光二極體的簡介.………………………1
第二章 實驗原理…………………………………………6
2-1有機發光二極體發光原理……………………………6
2-1-1螢光原理…………………………………………6
2-1-2 電激發光原理……………………………………9
2-2 高分子發光二極體內電荷傳輸之研究………………10
2-3 高分子發光二極體元件結構…………………………13
2-4 有激發光元件的材料…………………………………17
2-5 研究動機………………………………………………21
第三章 實驗製作流程……………………………………24
3-1 實驗儀器………………………………………………24
3-1-1 實驗儀器介紹……………………………………24
3-1-2 實驗儀器原理……………………………………26
3-2 實驗藥品………………………………………………30
3-3實驗步驟………………………………………………31
3-3-1 材料特性的量測…………………………………31
3-3-2元件製作及量測…………………………………33
3-3-2.1 Pattern ITO玻璃…………………………….34
3-3-2.2 樣品的製備…………………………………36
3-3-2.3樣品的光電性質量測……………………….39
第四章 結果與討論 ……………………………………42
4-1 材料特性介紹 ………………………………………42
4-1-1 PS-b-PI-Au的鑑定………………………………42
4-1-2 PS-b-PI與PS-b-PI-Au的玻璃轉換溫度(Tg) …44
4-1-3 PS-b-PI與PS-b-PI-Au的裂解溫度(Td) ……… 45
4-1-4 PS-b-PI與PS-b-PI-Au的能階…………………46
4-1-5 PS-b-PI與PS-b-PI-Au的溶液吸收光譜圖 …48
4-1-6 PS-b-PI與PS-b-PI-Au的薄膜吸收光譜圖…49
4-2 PS-b-PI與PS-b-PI-Au的TEM量測………………51
4-3 PS-b-PI與PS-b-PI-Au的AFM量測………………53
4-4 ITO/PEDOT(/PS-b-PI-Au)/PFO/Ca/Al 之電激發光性質比較……………………………………………… 55
4-5 ITO/PEDOT(/PS-b-PI)/PFO/Al 之電激發光性質比較
………………………………………………………62
4-6 各個元件隻電雞發光性質比較…………………….66
第五章 結論 ……………………………………………67
第六章 未來展望 ………………………………………69
參考文獻 ……………………………………………………70
參考文獻

[1]. M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys. , 38, 2024
(1963).

[2]. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. , 51, 913 (1987).

[3]. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K.
Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990).

[4]. A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, Appl. Phys. Lett. 61, 2793 (1992)

[5]. G. J. Lee, D. Kim, J. I. Lee, H. K. Shim, Y. W. Kim, and J. C. Jo, J. Appl. Phys. 98, 6504 (1993)

[6]. J. I. Jin, Y. H. Lee, and B. K. Nam, Polymer, 36, 193 (1995).

[7]. H. Peter, V. Horst, P. Joern, M. Rainer, and G. Andreas, Adv. Mater. 7,
388 (1995).

[8]. L. Smilowitz, A. Hays, A. J. Heeger, G. Wang, and J. E. Bowers, J. Chem. Phys. 98, 6504 (1993).

[9]. F. Cacialli, R. H. Friend, N. Haylett, R. Daik, W. J. Feast, D. A.dos Santos, and J. L. Breads, Appl. Phys. Lett. 69, 3794 (1996).

[10]. M. Hamaguchi, and K. Yoshino, Appl. Phys. Lett. 58, 1982 (1991).

[11]. 陳志宏,國立中正大學機電光整合工程研究所碩士論文,「高分子發光二極體元件結構對電激發光特性之影響」,國立中正大學(2004).

[12].陳國政,國立中正大學光機電整合工程研究所碩士論文,「含奈米金高分子發光二極體與雙穩態元件」,國立中正大學 (2005)

[13].郭啟吟,國立成奶j學化學工程研究所碩士論文,「高分子修飾陰極於發光二極體之研究」,國立成奶j學 (2006)

[14].Wolfgang Brutting,Stefan Berleb,Anton G.Muckl, Organic Electronic
(2001)

[15.]I. D. Parker, J. Appl. Phys., 75, 1656 (1994)

[16]. A. J. Heeger, I. D. Parker and Y. Yang, Synth. Met., 67, 23 (1994).


[17]. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J.Feast, Appl. Phys. Lett. , 75, 1679 (1999).

[18]. T. Fukuda, T. Kanbara, T. Yamamoto, K. Ishikawa, H. Takazoe, and A.Fukuda, Appl. Phys. Lett. , 68, 2346 (1996).

[19]. H. J. Naarmann, Poly. Sci., Poly.Symp., 75, 53 (1993)

[20]. C. W. Tang, S. A. VanSlyke, C. H. Chen ,Electroluminescence
of doped organic thin films, J. Appl. Phys. 65,3610 (1989)

[21]. C. W. Ko , Y. T. Tao , A. Danel , L. Krzemiñska , P.Tomasik,
Organic Light-Emitting Diodes Basedon2-(Stilben-4-yl)benzoxazole Derivatives: An Implication on theEmission Mechanism ,Chem. Mater. 13,2441 (2001)

[22]. 陳金鑫,黃孝文,OLED 有機電激發光材料與元件,五南圖書出版社出版(2005)

[23]. J. H. Park , Y. T. Lim , O.Ok Park , J.K. Kim, J.W.Yu , and Y.C.Kim, Chem. Mater. , 16, 688-692(2004)

[24]. S.H. Wu, H.M.Huang, K.C.Chen, C.W. Hu, C.C. Hsu, and C.C.Tsiang, Adv. Funct. Mater. 16, 1959–1966 (2006)

[25]..Y.J. Lin , W.Y. Chou and S.-T. Lin , Appl. Phys. Lett. 88, 071108 (2006)

[26]. T.W .Lee , M.G. Kim , S.Y.Kim , S.H.Park,O.Kwon , and T.Noh, Appl. Phys. Lett. 89, 123505 (2006)

[27]. 羅吉宗,薄膜科技與應用,全華科技圖書股份有限公司,台北市,2-5~11 (2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊