跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡孟杰
研究生(外文):M-J Tsai
論文名稱:適應性3D模型應用於多軸模擬與虛擬雕刻系統
論文名稱(外文):Adaptive 3D solid modeling for multi-axis NC simulation and haptic device
指導教授:姚宏宗姚宏宗引用關係
指導教授(外文):H. T. Yau
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:151
中文關鍵詞:虛擬雕刻碰撞測試多軸加工模擬
外文關鍵詞:NC SimulationHaptic RenderingCollision Detection
相關次數:
  • 被引用被引用:11
  • 點閱點閱:704
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以適應性的Voxel模型為基礎,配合APT(Automatically Programmed Tools)隱函數刀具方程式與快速碰撞模組發展出多軸模擬與虛擬雕刻兩個系統。
在多軸模擬加工中,主要是用來檢測設計出來的五軸刀具路徑是否正確,經由模擬加工後的結果與原始CAD模型比對,可以快速分析出那些NC路徑有問題,再加以修正。
而在虛擬雕刻系統中,透過虛擬雕刻機可以藉由力回饋真實地感受到3D的實體物件。而此系統可以應用於數位磨牙,讓實習牙醫生可以在虛擬環境中訓練磨牙的技巧。在標準的範本做比較後,可以利用數位檢測系統檢出不足或殘留的區域,快速地知道那些地方需要再改進,達成訓練的目的。
My research emphasizes the use of adaptive octree to develop a reliable multi-axis simulation procedure which verifies the cutting route and the workpiece appearance during and after simulation. Voxel models with adaptive octree data structure are used to approximate the machined workpiece with specified resolution. Implicit functions are used to represent various cutter geometries for the examination of cutter contact points with speed and accuracy. It allows a user to do error analysis and comparison between the cutting model and the original CAD model. It can also verify the exactness of NC codes before machining is carried out by a CNC machine in order to avoid wasting material and to improve machining accuracy.

In haptic system, the simulation engine then uses the same interaction
forces to compute their effect on objects in the virtual environment. We focus our attention on force response algorithms for rigid objects. Hence we made an application for 3D digital dental training system. This system could help dental students practice tool preparation in the virtual environment. After comparing, we know which places need improving again, reach to train.
目錄……………………………………………………………………Ⅰ
圖目錄…………………………………………………………………IV
表目錄…………………………………………………………………XI
第一章 緒論…………………………………………………………..001
1.1前言……………………………………………………………001
1.2研究動機………………………………………………………002
1.3研究目的………………………………………………………004
1.4文獻回顧………………………………………………………006
1.4.1高解析度的3D網格……………………………………006
1.4.2虛擬雕刻系統…………………..………………………007
1.4.3通用的刀具模組………………..………………………008
1.4.4碰撞測試模組…………………..………………………008
1.5研究方法………………………………………………………010
第二章 APT刀具…………………..…………………………………..013
2.1簡介……………………………………………………………013
2.2 APT刀具數學模型的建立……………...……………………014
2.2.1任意軸向隱函數………………………….….…………015
2.2.1.1圓柱……………………………………….……015
2.2.1.2圓環……………………………………….……017
2.2.1.3三角錐…………………………………….……019
2.2.1.4平面……………………………………….……020
2.2.2 APT刀具參數的轉換…………………….….…………021
2.2.3減化後的APT刀具……………..……….….…………027
2.2.3.1平刀……………………………………….……027
2.2.3.2球刀……………………………………….……028
2.2.3.3圓角刀…………………………………….……029
2.2.3.4錐形刀…………………………………….……029
2.2.3.5錐形圓角刀……………………………….……030
2.2.3.6錐形球刀………………………………….……032
2.2.3.7尖刀…………………..……..…………….……034
第三章 實體模型的建立及布林運算的演算法….….…………..…..035
3.1簡介……………………………………………………………035
3.2樹狀結構簡介…………………………………………………035
3.3八元素…………………………………………………………036
3.4 STL model轉換為Octree voxel model………………………039
3.4.1 STL model轉換為Octree voxel model範例成果…..…044
3.5模擬演算法的流程……………………………………………046
3.6碰撞測試………………………………………………………048
3.6.1 快速碰撞測試……………………………...…….……049
3.6.2隱函數碰撞測試……………..……….…………..……052
第四章高解析度3D表面網格建構…………………..…………..…..056
4.1簡介……………………………………………………………056
4.2 Marching Cube………………………………………………056
4.3 Edge Point Value……………………………………………062
4.3.1計算STL轉實體Voxel的EP值……………………..…064
4.3.2 EP值的布林運算……………………………..……..…067
4.3.3決定複合隱函數的EP值…………………….……..…072
4.4素材表面的建立………..……………………………………075
4.4.1劃分區域建立初始素材表面.………..……………..…075
4.4.2素材表面的細分………………..……………..……..…077
4.4.3縫補素材網格和刀具切削網格的破洞……………..…078
4.5修補破洞的方法………..……………………………………081
4.5.1投影法.………..………………………….…………..…082
第五章虛擬雕刻系統……………………….………..…………..…..085
5.1簡介……………………………………………………………085
5.2 系統架構…………………..…………………………………086
5.3 環境設定……………..………………………………………087
5.4力回饋系統………..………………………….………………091
5.4.1一階彈簧系統力回饋計算…..………..……………..…092
5.4.2利用EP值求解非雕刻狀態的力………………..…..…094
5.4.3求解雕刻狀態的力…………………………………..…102
5.4.4 Filter……………………………………………..…..…104
第六章應用範例展示…………………….….………..…………..…..107
6.1刀具切削模擬…………………………………………………107
6.2五軸刀具路徑模擬……………………………………………109
6.2.1誤差分析…..…………………..……..……………..…112
6.2.2結果比較…..…………………..……..……………..…113
6.3數位磨牙………………………………………………………114
第七章結論與未來展望…………………….………..…………..…..128
7.1結論……………………………………………………………128
7.2未來展望………………………………………………………129
參考文獻…………………………………………………..…………130
[1] S .Gottschalk et al.,“OBBTree: A Hierarchical Structure Structure for Rapid Interference Detection” ,Department of Computer Science.
[2] K. Yuan et al., “Collision Detection for A Haptic Interface“ ,International Conference on Robotics ,Intelligent Systems and Signal Processing Changsha ,China – October 2003.
[3] M. A. Otaduy,M. C. Lin,"Sensation Preserving Simplification for Haptic Rendering",Department of Computer Science.
[4] B. K. Choi et al.,”Modeling the Surface Swept by A Generalized Cutter for NC Verification”,Computer-Aided Design Vol.30 ,No.8 ,pp. 587-594 ,1998.
[5] C. J. Chiou, Y. S. Lee, “Swept Surface Determination for Five-Axis Numerical Control Maching” Machine Tools & Manufacture, pp.1497-1507, 2002.
[6] R. Shekhar et al., ”Octree-Based Decimation of Marching Cubes Surfaces”,Department of Computer and Information Science,1996.
[7] H. Lee et al.,“Real-time LOD: Marching Cube and Octree Based 3D Object Level-of-detail Modeling”,Department of EECS ,KAIST ,373-1 Kusung-dong Yusung-gu ,Taejon ,Korea 305-701.
[8] F. Velasco and J. C. Torres,”Cell Octree:A New Data Structure for Volume Modeling and Visualization ”,Stuttart ,Germany ,November 21-23,2001.
[9] R .Westermann et al., ”Real-Time Exploration of Regular Volume Data by Adaptive Reconstruction of Isosurfaces”, The Visual Computer ,pp. 100-111 ,1999.
[10] G. H. Weber et al., ”Extrction of Crack-free Isosurfaces from Adaptive Mesh Refinement Data” ,Department of Computer Science.
[11] L. P. Kobbelt et al., ”Feature Sensitive Surface Extraction from Volume Data”, In Proceedings of SIGGRAPH ,pp. 57-66 ,2001.
[12] S. Schaefer ,J. Warren ,”Dual Contouring : The Secret Sauce”, Technical Report TR 02-408.
[13] T. Ju et al.,”Dual Contouring of Hermite Data”, ACM SIGGRAPH ,pp 339-346 ,2002.
[14] S. Schaefer ,J. Warren ,”Dual Marching Cubes : Primal Contouring of Dual Grids”, Accepted to Pacific Graphics ,2004.
[15] K. A. and N. I. Badler ,”Feature Preserving Manifold Mesh from an Octree”, ACM SIGGRAPH ,pp.292-297,2003.
[16]R.B Jerard et al., "Approximate Methods for Simulation and Verification of Numerically Controlled Machining Programs", The Visual Computer , Vol. 5, pp.329-348 , 1989.
[17] W .P. Wang and K. K. Wang , “Geometric Modeling for Swept Volume of Moving Solids” ,IEEE Computer Graphics. Appl. Vol 6 No 12, pp.8-17,1986.
[18] Y. Kawashima et al., "A Flexible Quantitative Method for NC Machining Verification Using a Apace-Division Based Solid Model", The Visual Computer , Vol. 7, pp.149-157 ,1991.
[19]A. I. Sourin, and A. A. Pasko, "Function Representation for Sweeping by a Moving Solid", IEEE Transactions on Visualization and Computer Graphics, Vol. 2, No. 2,pp.11-18 ,1996.
[20] D. Jang et al.,“Voxel-Based Virtual Multi-Axis Maching” Advanced Manufacturing Technology, pp.709-713, 2000
[21]T. V. Hook, "Real Time Shaded NC Milling Display", Computer Graphics, Vol. 20, No. 4, pp.15-20 ,1986.
[22] M. Inui and R. Kakio , “Fast Visualization of NC Milling Result Using Graphics Acceleration Hardware”, International Conference on Robotics and Automation, pp.3089-3094, April 2000.
[23] B. K. Choi, and R. B. Jenrad ,”Sculptured Surface Maching : Theory and Applications”, Kluwer Academic Publishers No. 1 , pp. 61-75.7, 1998.
[24]B. K. Fussell et al. , “Robust Feedrate Selection for 3-axis NC Maching Using Discrete Models”, ASME Journal of Manufacturing Science and Engineering, pp.214-224, 2001.
[25] T. Saito and T. Takahashi , “NC Machining with G-buffer Method”, Computer Graphics, vol.25, 207-216, 1991.
[26] A. D. Spence et al., “Integrated Solid Modeler Based Solutions for Machining”, Computer-Aided Design, vol. 32, pp. 553-568, 2000.
[27] E. L. J. Bohez et al., “The stencil buffer sweep plane algorithm for 5-axis CNC tool path verification” Computer-Aided Design, vol.35, pp.1129-1142, 2003.
[28] G. G. and E. Gröller ,“Efficient Volume-Generation During the Simulation of NC-Milling “Mathematical Visualization”, pp.315-328, 1997.
[29]丁健佑 ,“高速切削下之NC動態模擬”, 中正大學 , 2001
[30]童宇辰,”適應性的多軸實體加工”,中正大學,2003
[31] K. Yamaguchi et al. ,“Octree-Related Data Structures and Algorithms” IEEE Computer graphics , vol 8, Issue 3, pp.8-68, 1984
[32] W. Schroeder et al., “The Visualization Toolkit” 2nd Edition
[33] W. E. Lorensen and H. E. Cline ,“Marching Cubes: A High Resolution 3D Surface Construction algorithm”, Computer Graphics, vol.21, pp.163-169, 1987
[34] C. Montani et al.,”Discretized Marching Cubes”, IEEE Visualization Conference Proceedings, pp.281-287 , 1994.
[35] W. A. McNeely et al.,” Six Degree-of-Freedom Haptic Rendering Using Voxel Sampling”,SIGGRAPH,1999.
[36] M. Renz et al., ”Stable Haptic Interaction with Virtual Environments Using an Adapted Voxmap-PointShell Algorithm”,SIGGRAPH,2003.
[37] W. A. McNeely et al., ”Advances in Voxel-Based 6-DOF Haptic Rendering”,SIGGRAPH,2005.
[38] Y. Chen and Z. Yang , ”Haptic Rendering Based on Spatial Run-Length Encodeing”, Robotics and Computer-Integrated Manufacturing,pp.237-246 ,2004.
[39] Y. Chen et al. ,“On the Development of a Haptic System for Rapid Product Development”, Computer-Aided Design ,pp.559-569 ,2005.
[40] Y. Chen and Z. Yang , ”A Reverse Engineering Method Based on Haptic Volume Removing“ , Computer-Aided Design ,pp.45-54 ,2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top