跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳慶儒
研究生(外文):Ching-ju Chen
論文名稱:具黏彈性支承齒輪轉子軸承系統之動態分析
論文名稱(外文):Dynamic Analysis of Geared RotorBearing Systems with Viscoelastic Supports
指導教授:蕭庭郎
指導教授(外文):Ting-nung Shiau
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:76
中文關鍵詞:損失因子黏彈性支承齒輪轉子
外文關鍵詞:viscoelasti supportsgeared rotorloss factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:402
  • 評分評分:
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:0
高速主軸廣泛使用於工業用機器,如航空發動機、蒸氣渦輪機、渦輪發電機、內燃機、往復式與離心式壓縮機等。而齒輪系統乃為現代動力傳輸最普遍機構之一,且經常合併轉子軸承系統以做為動力產生與輸出之用。由於高速與高精度傳輸之需求,齒輪轉子動力領域的研究愈顯重要。
振動會影響高速主軸系統的加工精度,而黏彈性支承可以降低系統的振動,並且增加主軸轉速的工作區間,因此考慮加裝黏彈性支承來改善這方面的問題。本文將探討的是具黏彈性支承之齒輪轉子軸承系統的動態特性之分析。
系統考慮側向與扭轉之間的耦合效應,藉著使用拉格朗至法及有限元素模型推導出齒輪轉子軸承系統之運動方程式,再以數值分析求出自然頻率,模態振型及穩態響應。首先分析黏彈性支承對系統穩態響應之影響,並分別對不同的黏彈性支承之剛性,損失因子和質量,以及齒輪在不同的轉軸位置對系統穩態響應之影響做探討。最後討論齒輪囓合的影響。
結果顯示,系統加裝黏彈性支承後,在低頻處會多出一個模態。當黏彈性支承的剛性或損失因子增加時,系統的剛性和阻尼隨之增加,所以系統的響應也將隨之減少。改變齒輪的位置將使系統的等效剛性產生變化,當齒輪越接近軸承則系統等效剛性越大使得響應變小。
High-speed spindle are generally employed in industrial machines such as aviation generator, steam and gas turbines, turbo-generators, internal combustion engines, reciprocating and centrifugal compressors. Gear system is one of the most common mechanisms for modern power transmission in theses industrial machines. The gear systems coupled with rotor-bearing systems are the source of power generation and power extraction. On account of the increasing demand for high speed and high accuracy transportation, the research in the field of geared rotor dynamics becomes very important.
The vibration significantly affects the performance of the high-speed spindle. The viscoelastic supports can reduce the vibration of the system and increase the working range of the high-speed spindle. Therefore, the viscoelastic supports are adopted to improve the problem. This study discusses the dynamic characteristics of the gear rotor-bearing system mounted on viscoelastic supports.
A finite element model of the geared rotor-bearing system mounted on viscoelastic supports is developed by taking account of the coupling effect of lateral-torsional motion. Then the system natural frequencies, mode shapes, and steady-state responses are determined. At first, the effects of viscoelastic supports on the system response are analyzed. And the steady-state response is investigated for various viscoelastic supports stiffness, various viscoelastic supports loss factor, various viscoelastic supports mass and various disk positions. The effect of gear mesh is also discussed.
As seen from results, one mode will be particularly induced in low frequency when gear rotor systems are mounted on viscoelastic supports. When the stiffness or the loss factor of the viscoelastic support increases, the system response will decrease. The gear position on the shaft will change the system equivalent stiffness. When the gear positions are closed to the bearing, the equivalent stiffness of the system will increase and the system response will decrease.
CONTENTS

摘要 I
ABSTRACT III
CONTENTS V
LIST OF TABLES VII
LIST OF FIGURES VIII
NOMENCLATURES XII
CHAPTERS PAGE

CHAPTER 1 INTRODUCTION
1-1 Motivation of Research 1
1-2 Literature Review 2
1-3 Outline 5

CHAPTER 2 THE MODEL OF GEARED ROTOR-BEARING
SYSTEM
2-1 Description of Geared Rotor-Bearing System 6
2-2 Equation Formulation 6
2-2-1 The disk 7
2-2-2 The gear mesh 8
2-2-3 Shaft elements 10
2-2-4 Bearing 12
2-2-5 Viscoelastic Supports 12
2-2-6 System equations of motion 15
2-3 Dynamic Analysis 15
2-3-1 Whirl speed analysis 16
2-3-2 Steady-state response analysis 17

CHAPTER 3 NUMERICAL RESULTS AND DISSCUSSIONS
3-1 The System Response with/without Viscoelastic Supports 22
3-2 The System Response versus Parameters of Viscoelastic Supports 23
3-3 The System Response versus Mass Ratios of Viscoelastic Support and Gear 25
3-4 The System Response versus Disk Positions 26
3-5 The Effects of Gear Mesh 27

CHAPTER 4 CONCLUSIONS AND FUTURE STUDY
4-1 Conclusions 62
4-2 Future work 63

REFERENCE 64
APPENDIX
REFERENCES
[1] J.S. Rao, 1992, “Rotor dynamics”, 2nd edition, John Wiley and Sons, New York.
[2] M. Lalanne and G.. Ferrairs, 1991, “Rotor dynamics Prediction in Engineering”, John Wiley and Sons, New York.
[3] J.W. Lund and B. Sternlicht, 1962, “Rotor-Bearing Dynamics with Emphasis on Attenuation,” Journal of Basic Engineering, ASME, Vol. 84, pp. 491-502.
[4] J.W. Lund, 1963, “Attenuation of Bearing Transmitted Noise Vol. 2, Part 1: Attenuation of Rotor Unbalance Forces by Flexible Bearing Supports,” Report No. EC232, Bureau of Ships, Contract No.BS-86914.
[5] J. Dworski, 1964, “High-Speed Rotor Suspension Formed by Fully Floating Hydrodynamic Radical and Thrust Bearings,” Journal of Engineering for Power, ASME, Vol. 86, pp. 149-158.
[6] G..R. Cowper, 1966, “The Shear Coefficient in Timoshenko’s Beam Theory,” Journal of Applied Mechanical, ASME, Vol. 102, pp. 335-340.
[7] D.W. Childs and K. Graviss, 1982, “A Note on Critical-Speed Solutions for Finite-Element-Based Rotor Models,” Journal of Mechanical Design, ASME, Vol. 104, pp. 412-418.
[8] R.G. Kirk and E.J. Gunter, 1972, “The Effect of Support Flexibility and Damping on the Synchronous Response of A Single Mass Flexible Rotor,” Journal of Engineering for Industry, ASME , Vol. 94, pp. 221-232.
[9] H.D. Nelson, 1980, “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” Journal of Mechanical Design, ASME, Vol. 102, pp. 793-803.
[10] L.L. Buccuiarell, 1982, “On the Instability of Rotating Shafts Due to Internal Damping,” Journal of Applied Mechanics, ASME, Vol. 49, pp. 425-428.
[11] S. Saito and T. Someya, 1984, “Study of Damped Critical Speeds and Damping Ratios of Flexible Rotors,” Journal of Vibration, Acoustics, Stress and Reliability in Design, ASME, Vol. 106, pp. 62-71.
[12] M. Rajan, H.D. Nelson and W.J. Chen, 1986, “Parameter Sensitivity in the Dynamics of Rotor-Bearing Systems,” Journal of Vibration, Acoustics, Stress and Reliability in Design, ASME, Vol. 108, pp. 197-206.
[13] L.W. Chen and D.M. Ku, 1992, “Dynamic Stability of Cantilever Shaft-Disk System,” Journal of Vibration and Acoustics, ASME, Vol. 114, pp. 326-329.
[14] T.N. Shiau and J.L. Hwang, 1993, “Generalized Polynomial Expansion Method for the Dynamic Analysis of Rotor-Bearing Systems,” Journal of Engineering for Gas turbines and Power, ASME, Vol. 115, pp. 209-217.
[15] J. Lund, 1978, “Critical Speed, Stability and Response of a Geared Train of Rotors,” Journal of Mechanical Design, ASME, Vol. 100, pp. 535-538.
[16] H. Iida, A. Tamura, K. Kikuchi, and H. Agata, 1980, “Coupled Torsional -Flexural Vibration of a Shaft in a Geared System of Rotors,” Bulletin of the JSME, Vol. 23, pp. 2111-2117.
[17] S.V. Neriya, R.B. Bhat and T.S. Sankar, 1984, “Effect of Coupled Torsional -Flexural Vibration of a Geared Shaft System on Dynamic Tooth Load,” The Shock and Vibration Bulletin, Part 3, Vol. 54, pp. 67-75.
[18] S.V. Neriya, R.B. Bhat and T.S. Sankar, 1985, “Coupled Torsional-Flexural Vibration of a Geared Shaft System Using Finite Element Method,” The Shock and Vibration Bulletin, Part 3, Vol. 55, pp. 13-25.
[19] J.W. David and N.G.. Park, 1986, “The Vibration Problem in Gear Coupled Rotor Systems”, Bulletin of the JSME, Vol. 29, pp. 297-303.
[20] C. Bagci and S.K. Rajavenkateswaran, 1987, “Frequency and Modal Analysis and Critical Speed of Multicylinder Engines as Spatial Elastic System,” Design Engineering Divisio, ASME, Vol. 7, pp. 29-37.
[21] O.H. Nevzat and D.R. Houser, 1988, “Dynamic Analysis of High Speed Gears by Using Loaded Static Transmission Error,” Journal of Sound and Vibration, ASME, Vol. 125, pp. 71-83.
[22] F.K. Choy, Y.K. Tu, J.J. Zakrajsek, and D.P. Townsend, 1991, “Effects of Gear Box Vibration and Mass Imbalance on the Dynamics of Multistage Gear Transmission,” Journal of Vibration and Acoustics, ASME, Vol. 113, pp. 333-344.
[23] A. Kahraman, H.N. Ozguven, D.R. Houser, and J. J. Zakrajsek, 1992, “Dynamics Analysis of Geared Rotors by Finite Elements,” Journal of Mechanical Design, ASME, Vol. 114, pp. 507-514.
[24] T.N. Shiau, Y.W. Chou, J.R. Chang, and H.D. Nelson, 1994, “A Study on the Dynamic Characteristics of Geared Rotor-Bearing System with Hybrid Method,” , ASME, 94-GT-355, pp. 1-11.
[25] J.S. Rao, T.N. Shiau and J.R. Chang, 1995, “Coupled Bending-Torsional Vibration of Geared Rotors,” Design Engineering Technical Conference, ASME, DE-Vol.84-2, Vol. 3, Part B, pp. 977-989.
[26] T.N. Shiau, S.T. Choi and J.R. Chang, 1998, “Theoretical Analysis of Lateral Response due to Torsional Excitation of Geared Rotors,” Mechanism and Machine Theory, ASME, Vol. 33, pp. 761-783.
[27] M. Li, H.Y. Hu and L. Yu, 2002 “Coupled Axial-Lateral-Torsional Dynamics of A Rotor-Bearing System Geared by Spur Bevel Gears,” Journal of Sound and Vibration, Vol. 254, pp.427-446.
[28] A.S. Lee, J.W. Ha and D.H. Choic, 2003, “Coupled lateral and torsional vibration characteristics of a speed increasing geared rotor-bearing system,” Journal of Sound and Vibration, ASME, Vol. 263, pp. 725–742.
[29] M.A. Rao, J. Srinivas, V.B.V. Rama, and K.V.S.S. Kumar, 2003, “Coupled Torsional-Lateral Vibration Analysis of Geared Shaft System Using Mode Synthesis,” Journal of Sound and Vibration, Vol. 261, pp. 359-364.
[30] A.S. Lee and J.W. Ha, 2005, “Prediction of Maximum Unbalance Responses of A Gear-Coupled Two-Shaft Rotor-Bearing System,” Journal of Sound and Vibration, Vol. 283, pp. 507-523.
[31] D.R. Bland and E.H. Lee, 1965, “On the Determination of a Viscoelastic Model.”, Journal of Applied Mechanics, ASME, Vol. 23, p. 416-420.
[32] A.D. Kapur, B.C. Nakra and D.R. Chawla, 1977, “Shock Response of Viscoelastic Damped Beams,” Journal of Sound and Vibration, Vol. 55, pp.351~362.
[33] B.C. Nakra, 1984, “Vibration Control with Viscoelastic Materials,” Shock and Vibration Digest, Vol. 16, pp.17~22.
[34] J.K. Dutt and B.C. Nakra, 1992, “Stability of Rotor System with Viscoelastic Supports”, Journal of Sound and Vibration, ASME, Vol. 153, pp. 89-96.
[35] J.K. Dutt and B.C. Nakra, 1993, “Vibration Response Reduction of a Rotor Shaft System Using Viscoelastic Polymeric Supports”, Journal of Vibration and Acoustics, ASME, Vol. 115, pp. 221-223.
[36] P. Kulkarni, S. Pannu and B.C. Nakra, 1993, “Unbalance Response and Stability of a Rotating System with Viscoelastically Supported Bearings”, Mechanism and Machine Theory, Vol. 28, N0. 3, pp. 427-436.
[37] J.K. Dutt and B.C. Nakra, 1996, “Stability Characteristics of Rotating Systems with Journal Bearing on Viscoelastic Supports,” Mechanism and Machine Theory, Vol.31, pp.771~779.
[38] K. Bhattacharyya and J.K. Dutt, 1997, “Unbalance Response and Stability Analysis of Horizontal Rotor Systems Mounted on Nonlinear Rolling Element Bearings with Viscoelastic Supports”, Journal of Vibration and Acoustics, ASME, Vol. 119, pp. 539-544.
[39] N.H. Shabaneh and J.W. Zu, 2000, “Dynamic and Stability Analysis of Rotor-Shaft Systems with Viscoelastically Supported Bearings”, Mechanism and Machine Theory, Vol. 35, pp. 1313-1330.
[40] 謝賢儒,2001,“具黏彈性支承高速主軸之動態分析”,中正大學,碩士論文。
[41] Y.B. Lee, T.H. Kim, C.H. Kim, N.S. Lee, and D.H. Choi, 2004, “Dynamic Characteristics of a Flexibles Rotor System Supported by a Viscoelastical Foil Bearing”, Tribology International, Vol. 37, pp. 679-687.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top