跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳雨樵
研究生(外文):Yu-Chiao Chen
論文名稱:以分子模擬方法研究奈米線之機械性質
論文名稱(外文):Molecular Simulation Study on the Mechanical Properties of Nanowires
指導教授:張怡玲
指導教授(外文):I-Ling Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:104
中文關鍵詞:分子靜力分子動力分子模擬奈米線尺寸效應
外文關鍵詞:nanowiremechanical propertiesmolecular staticssize effectmolecular dynamics
相關次數:
  • 被引用被引用:13
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
一維奈米結構由於其材料特性優異,而被用於半導體產業,例如半導體奈米線方面,而當材料尺寸縮小至奈米等級時,就無法以傳統力學的分析方法來加以研究,所以本論文將用分子模擬方法,來研究一維奈米線的機械性質。
本論文將會使用不同分子模擬方法,對於奈米材料的機械性質做一系統的比較,例如:楊氏係數、波松比和降伏應力會有何不同,藉以釐清是否有些現象只是因為所採用的分子模擬方法而造成的,而非材料本身的特性所致。另外,希望經由分子模擬結果,來解釋彈性常數於不同晶格方向,為何會變軟與變韌,並更進ㄧ步地探討其發生原因。
模擬結果中發現,不同主胞室長度的奈米線在分子靜力學法中,不適合用於分析塑性行為,其降伏點會隨著主胞室長度而有所不同,而不同晶格方向奈米線其彈性常數,和其表面應力與內部應力間的消長有關,[100]和[111]奈米線其彈性常數會隨著線寬變小而變軟,110]
奈米線則隨著線寬變小而變韌。
One dimensional nanostructures (i.e., nanowires) have been widely used in semiconductor industry due to their unique material characteristics. It is known that the properties of nanomaterials could not be realized by traditional mechanics. Our research systematically adopts
both molecular statics and dynamics simulation to study the mechanical properties (i.e., Young’s modulus, Poisson’s ratio, yield stress, etc) of nanowires in order to clarify the size dependence of mechanical properties for nanowires. The underlying mechanisms for the size effect are also examined.
It is shown from both molecular methods that the mechanical properties of nanowires depend on the lateral size of nanowires and the trend of size dependence is significantly influenced by the crystal orientations It is found that molecular statics method may not be a good way to analyze the plastic behavior of nanowires since the yield stress would be altered due to the periodic size length.
目錄
中文摘要………………………………………………………………I
英文摘要…………………………………………………………… II
誌謝………………………………………………………………… III
目錄……………………………………………………………………IV
圖目錄………………………………………………………………VIII
表目錄………………………………………………………………XIV
符號說明………………………………………………………………XV
第一章 緒論..............................................................................................1
1.1 前言...............................................................................................1
1.2 文獻回顧.......................................................................................2
1.2.1 分子靜力學文獻回顧.........................................................3
1.2.2 分子動力學文獻回顧.........................................................3
1.2.3 以分子動力學研究奈米線機械性質之文獻回顧............4
1.2.4 尺寸效應機制文獻回顧.....................................................7
1.3 研究動機.......................................................................................8
1.4 本文架構.......................................................................................9
第二章 分子靜力學與分子動力學原理................................................10
2.1 分子靜力學.................................................................................10
2.1.1 最速下降法[25] ................................................................10
2.1.2 共軛梯度法.......................................................................12
2.2 分子動力學.................................................................................13
2.2.1 分子動力學之基本假設...................................................13
2.2.2 勢能函數...........................................................................14
2.2.3 邊界條件與最小映像法則...............................................16
2.2.4 截斷半徑...........................................................................17
(a) Verlet 表列法..................................................................18
(b) Cell link 表列法.............................................................18
2.2.5 運動方程式.......................................................................21
2.2.6 Gear's 五階預測修正法....................................................21
2.2.7 系統速度、溫度修正.......................................................25
2.2.8 原子應力...........................................................................25
第三章 分子靜力學模擬方法與結果....................................................27
3.1 原子模型.....................................................................................27
3.2 程式模擬流程.............................................................................28
3.3 程式驗證.....................................................................................29
3.4 模擬規劃.....................................................................................31

3.5 模擬方法.....................................................................................34
3.6 模擬結果.....................................................................................35
3.6.1 晶格間距...........................................................................35
3.6.2 彈性常數...........................................................................36
3.6.3 表面應力...........................................................................37
3.6.4 截面形狀...........................................................................38
3.6.5 塑性行為...........................................................................39
第四章 分子動力學模擬方法與結果....................................................64
4.1 程式模擬流程圖.........................................................................64
4.2 程式驗證.....................................................................................66
4.3 模擬規劃.....................................................................................67
4.4 模擬方法.....................................................................................68
4.5 模擬結果.....................................................................................69
4.5.1 晶格間距...........................................................................69
4.5.2 楊氏係數...........................................................................69
4.5.3 降伏應力...........................................................................69
第五章 結論與未來展望........................................................................78
5.1 結論.............................................................................................78
5.2 未來展望.....................................................................................79
參考文獻......................................................82
附錄A.........................................................84
參考文獻
[1] X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, “Indium
Phosphide Nanowires as Building Blocks for Nanoscale Electronic and
Optoelectronic Devices, ” Nature, 409, 66, 2001.
[2] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber,
R. Russo and P. Yang1, “Room-Temperature Ultraviolet Nanowire
Nanolasers,” Science, 292, 1897, 2001.
[3] Y. Cui, Q. Wei, H. Park and C. M. Lieber, “Nanowire Nanosensors
for Highly Sensitive and Selective Detection of Biological and Chemical
Species,” Science, 293, 1289, 2001.
[4] 徐自強, “以分子動力學方法研究奈米微結構之缺陷,” 國立成奶j學碩士論文,2002.
[5] P. Villain, P. Beauchamp, K.F. Badawi, P. Goudeau and P. O. Renault,
“Atomistic Calculation of Size Effects on Elastic Coefficients in
Nanometre-sized Tungsten Layers and Wires,” Scripta Materialia, 50,
1247, 2004.
[6] H. Liang, M. Upmanyu and H. Huang, “Size-dependent Elasticity of
Nanowires: Nonlinear Effects,” Physical Review B, 71, 241403, 2005.
[7] J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory
of Transport Properties. IV.The Equations of Hydrodynamics,” Journal of
Chemical Physics, 18, 817, 1950.
[8] N. Mmetropolis, A. W. Rosenbluth, M. N. Rosenblluth, A. H. Teller
and E. Teller, “Equation of state calculations by fast computing
machines,” Journal of Chemical Physics, 21, 1087, 1953.
[9] B. J. Alder and T. E. Wainwright, “Phase Transition for A Hard
Sphere System,” Journal of Chemical Physics, 27, 1208, 1957.
[10] B. J. Alder and T. E. Wainwright, “Studies in Molecular Dynamics
in General Method,” Journal of Chemical Physics, 31, 459, 1959
[11] T. Kitamura, K. Yashiro and R. Ohtani, “Atomic Simulation on
Deformation and Fracture of Nano-Single Crystal of Nickel in Tension,”
JSME international Journal, 40, 430, 1997.
[12] H. Mehrez and S. Ciraci, “Yielding and Fracture Mechanisms of
Nanowires,” Physical Review B, 56, 12632, 1997.
[13] 饒智昇, “以分子動力學研究奈米級微結構的力學問題,” 國立成奶j學碩士論文, 1999.
[14] P. S. Branicio and J-P Rino, “Large Deformation and Amorphization
of Ni Nanowires under Uniaxial Strain: A Molecular Dynamics Study,”
Physical Review B, 62, 16950, 2000.
[15] 陳道隆, “以分子動力學研究奈米級微結構之拉伸、壓縮、扭轉
變形機制,” 國立成奶j學碩士論文, 2001.
[16] W. J. Chang and T. H. Fang, “Influence of Temperature on Tensile
and Fatigue Behavior of Nanoscale Copper using Molecular Dynamics
Simulation,” Journal of Physics and Chemistry of Solids, 1279, 2003.
[17] S-P Ju, J-S Lin and W-J Lee, “A Molecular Dynamics Study of the
Tensile Behaviour of Ultrathin Gold Nanowires,’’ Nanotechnology, 1221,
2004.
[18] 洪力壹, “奈米及金屬絲線拉伸與壓縮過程之分子動力學觀
察,"國立中正大學碩士論文, 2004.
[19] D. L. Chen and T. C. Chen, “Mechanical properties of Au nanowires
under uniaxial tension with high strain-rate by molecular dynamics, ’’
Nanotechnology, 2972, 2005.
[20] M. Schmid, W. Hofer and P. Varga, “Surface stress, surface elasticity,
and the size effect in surface segregation,” Physical Review B, 51, 10937,
1994.
[21] J. Diao, K. Gall and M. L. Dunn, “Atomistic simulation of the
structure and elastic properties of gold nanowires,” Journal of the
Mechanics and Physics of Solids, 52, 1935, 2004.
[22] L. G. Zhou and H. Huang, “Are Surfaces Elastically Softer or
Stiffer,” Applied Physics Letters, 84, 1940, 2004.
[23] R. E. Miller and V. B. Shenoy, “Size-dependent Elastic Properties of
Nanosized Structural Elements,” Nanotechnology, 11, 139, 2000.
[24] K. Sieradzki, and R. C. Cammarata, “Elastic properties of thin fcc
films,” Physical Review B, 41, 12285, 1990.
[25] G. Lindfield and J. Penny, “Numerical Methods Using Matlab 2/E,”
2004.
[26] R. J. Arsenault and J. R. Beeler, “Computer Simulation in Material
Science,” ASM International, USA, 1988.
[27] R. Smith and M. Jakas, “Atomic and Ion Collisions in Solids and At
Surfaces: Theory, Simulation and Applications,” Cambridge University
Press, USA, 1997.
[28] J. E. Lennard-Jones, “The Determination of Molecular Fields. I.
From the Variation of the Viscosity of a Gas with Temperature,”
Proceedings of the Royal Society of London, 106A, 441, 1924; “The
Determination of Molecular Fields. II. From the Variation of the
Viscosity of a Gas with Temperature,” Proceedings of the Royal Society
of London, 106A, 463, 1924.
[29] L. A. Girifalco and V. G. Weizer, “Application of the Morse
Potential Function to Cubic Metals,” Physical Review, 114, 1959.
[30] S. M. Foiles, M. I. Baskes and M. S. Daw, “Embedded-atom-method
Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys,”
Physical Review B. 33, 7983, 1986.
[31] M. S. Daw, S. M. Foiles, and M. I. Baskes, “The Embedded-Atom
Method - A Review of Teory and Applications,” Materials Science
Reports, 9, 251, 1993.
[32] M. I. Baskes, J. S. Nelson, and A. F. Wright, “Semiempirical
Modified Embedded-atom Potentials for Silicon and Germanium,”
Physical Review B, 40, 6085, 1989.
[33] M. I. Baskes, “Modified Embedded-atom Potentials for Cubic
Materials and Impurities,” Physical Review B, 46, 2727, 1992.
[34] J. M. Haile, “Molecular Dynamics Simulation: Elementary
Methods,” John Wiely & Sons, Inc., USA, 1992.
[35] D. Srolovitz, K. Maeda, V. Vitek, T. Egami, “Structural defects in
amorphous solids statistical analysis of a computer model,” Philosophical
Magazine A, 44, 847, 1981.
[36] A. Rahman, “Correclation in the Motion of Atoms in Liquid Argon,”
Physical Review, 136, 405, 1964.
[37] Timoshenko and Goodier, “Theory of Elasticity,” McGraw-Hill
Book Company, 1970.
[38] M. W. Zemansky, “Heat and thermodynamics,” McGraw-Hill, 1968.
[39] Y. R. Jeng and C. M. Tan, “Theoretical Study of Dislocation
Emission around a Nanoindentation using a Static Atomistic Model,”
Physical Review B, 69, 104, 2004.
[40] Y. R. Jeng and C. M. Tan, “Study of Nanoindentation using FEM
Atomic Model,” ASME Journal of Tribology, 126, 767, 2004.
[41] S. M. Foiles, M. I. Baskes, and M. S. Daw,
“Embedded-atom-method Functions for the Fcc Metals Cu, Ag, Au, Ni,
Pd, Pt, and their Alloys,” Physical Review B, 33, 7983, 1986.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 成之約,「派遣勞動」及其對勞資關係與人力資源管理之意涵與因應,空大行政學報,第10期,頁1-26,民國89年6月。
2. 成之約,淺論「派遣勞動」及其對勞資關係的影響,就業與訓練,第16卷第6期,頁3-11,民國87年11月。
3. 田玉霞,部分工時勞動情勢分析,中國統計通訊,第13卷第1期,頁9-22,民國91年1月。
4. 成之約、莊美娟,資訊科技運用對勞資關係影響之初探,經社法制論叢,第26期,頁167-193,民國89年7月。
5. 成之約,部分時間工作發展與所得分配問題,國家政策論壇季刊,春季號,頁221-237,民國93年1月。
6. 成之約,「派遣勞動」及其發展的探討:工會觀點,萬國法律,第138期,頁2-14,民國93年12月。
7. 李來希,三角習題 兩岸頻傳 談派遣勞動之立法規範,實用稅務,第246期,頁85-89,民國84年6月。
8. 李來希,談派遣勞動之立法規範,勞工行政,第87期,頁52-56,民國84年7月。
9. 吳全成,青少年部分工時人力運用兼論我國工讀生問題,勞工研究,第134期,頁1-9,民國88年1月。
10. 吳若萱,派遣勞動如何重塑僱傭關係與企業用人政策,勞工行政,第147期,頁34-41,民國89年7月。
11. 邱祈豪,派遣勞工職業能力開發及評價制度之探討,萬國法律,第138期,頁67-81,民國93年12月。
12. 邱駿彥,勞動派遣之法律關係探討,萬國法律,第138期,頁50-66,民國93年12月。
13. 邱駿彥,勞動契約關係存否之法律上判斷標準(以特別看護與醫院間之勞動契約為例),政大法學評論,第63期,頁359-372,民國89年6月。
14. 陳金泉,職業災害補償實務爭議案例解析,政大勞動學報,第12期,頁425-455,民國91年7月。
15. 盛惠煜,加強非典型僱佣型態勞動者之勞動條件保護研究,臺灣銀行季刊,第55卷第4期,頁227-261,民國93年12月。