|
參考文獻 [1] X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices, ” Nature, 409, 66, 2001. [2] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang1, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, 292, 1897, 2001. [3] Y. Cui, Q. Wei, H. Park and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science, 293, 1289, 2001. [4] 徐自強, “以分子動力學方法研究奈米微結構之缺陷,” 國立成奶j學碩士論文,2002. [5] P. Villain, P. Beauchamp, K.F. Badawi, P. Goudeau and P. O. Renault, “Atomistic Calculation of Size Effects on Elastic Coefficients in Nanometre-sized Tungsten Layers and Wires,” Scripta Materialia, 50, 1247, 2004. [6] H. Liang, M. Upmanyu and H. Huang, “Size-dependent Elasticity of Nanowires: Nonlinear Effects,” Physical Review B, 71, 241403, 2005. [7] J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Properties. IV.The Equations of Hydrodynamics,” Journal of Chemical Physics, 18, 817, 1950. [8] N. Mmetropolis, A. W. Rosenbluth, M. N. Rosenblluth, A. H. Teller and E. Teller, “Equation of state calculations by fast computing machines,” Journal of Chemical Physics, 21, 1087, 1953. [9] B. J. Alder and T. E. Wainwright, “Phase Transition for A Hard Sphere System,” Journal of Chemical Physics, 27, 1208, 1957. [10] B. J. Alder and T. E. Wainwright, “Studies in Molecular Dynamics in General Method,” Journal of Chemical Physics, 31, 459, 1959 [11] T. Kitamura, K. Yashiro and R. Ohtani, “Atomic Simulation on Deformation and Fracture of Nano-Single Crystal of Nickel in Tension,” JSME international Journal, 40, 430, 1997. [12] H. Mehrez and S. Ciraci, “Yielding and Fracture Mechanisms of Nanowires,” Physical Review B, 56, 12632, 1997. [13] 饒智昇, “以分子動力學研究奈米級微結構的力學問題,” 國立成奶j學碩士論文, 1999. [14] P. S. Branicio and J-P Rino, “Large Deformation and Amorphization of Ni Nanowires under Uniaxial Strain: A Molecular Dynamics Study,” Physical Review B, 62, 16950, 2000. [15] 陳道隆, “以分子動力學研究奈米級微結構之拉伸、壓縮、扭轉 變形機制,” 國立成奶j學碩士論文, 2001. [16] W. J. Chang and T. H. Fang, “Influence of Temperature on Tensile and Fatigue Behavior of Nanoscale Copper using Molecular Dynamics Simulation,” Journal of Physics and Chemistry of Solids, 1279, 2003. [17] S-P Ju, J-S Lin and W-J Lee, “A Molecular Dynamics Study of the Tensile Behaviour of Ultrathin Gold Nanowires,’’ Nanotechnology, 1221, 2004. [18] 洪力壹, “奈米及金屬絲線拉伸與壓縮過程之分子動力學觀 察,"國立中正大學碩士論文, 2004. [19] D. L. Chen and T. C. Chen, “Mechanical properties of Au nanowires under uniaxial tension with high strain-rate by molecular dynamics, ’’ Nanotechnology, 2972, 2005. [20] M. Schmid, W. Hofer and P. Varga, “Surface stress, surface elasticity, and the size effect in surface segregation,” Physical Review B, 51, 10937, 1994. [21] J. Diao, K. Gall and M. L. Dunn, “Atomistic simulation of the structure and elastic properties of gold nanowires,” Journal of the Mechanics and Physics of Solids, 52, 1935, 2004. [22] L. G. Zhou and H. Huang, “Are Surfaces Elastically Softer or Stiffer,” Applied Physics Letters, 84, 1940, 2004. [23] R. E. Miller and V. B. Shenoy, “Size-dependent Elastic Properties of Nanosized Structural Elements,” Nanotechnology, 11, 139, 2000. [24] K. Sieradzki, and R. C. Cammarata, “Elastic properties of thin fcc films,” Physical Review B, 41, 12285, 1990. [25] G. Lindfield and J. Penny, “Numerical Methods Using Matlab 2/E,” 2004. [26] R. J. Arsenault and J. R. Beeler, “Computer Simulation in Material Science,” ASM International, USA, 1988. [27] R. Smith and M. Jakas, “Atomic and Ion Collisions in Solids and At Surfaces: Theory, Simulation and Applications,” Cambridge University Press, USA, 1997. [28] J. E. Lennard-Jones, “The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature,” Proceedings of the Royal Society of London, 106A, 441, 1924; “The Determination of Molecular Fields. II. From the Variation of the Viscosity of a Gas with Temperature,” Proceedings of the Royal Society of London, 106A, 463, 1924. [29] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Physical Review, 114, 1959. [30] S. M. Foiles, M. I. Baskes and M. S. Daw, “Embedded-atom-method Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys,” Physical Review B. 33, 7983, 1986. [31] M. S. Daw, S. M. Foiles, and M. I. Baskes, “The Embedded-Atom Method - A Review of Teory and Applications,” Materials Science Reports, 9, 251, 1993. [32] M. I. Baskes, J. S. Nelson, and A. F. Wright, “Semiempirical Modified Embedded-atom Potentials for Silicon and Germanium,” Physical Review B, 40, 6085, 1989. [33] M. I. Baskes, “Modified Embedded-atom Potentials for Cubic Materials and Impurities,” Physical Review B, 46, 2727, 1992. [34] J. M. Haile, “Molecular Dynamics Simulation: Elementary Methods,” John Wiely & Sons, Inc., USA, 1992. [35] D. Srolovitz, K. Maeda, V. Vitek, T. Egami, “Structural defects in amorphous solids statistical analysis of a computer model,” Philosophical Magazine A, 44, 847, 1981. [36] A. Rahman, “Correclation in the Motion of Atoms in Liquid Argon,” Physical Review, 136, 405, 1964. [37] Timoshenko and Goodier, “Theory of Elasticity,” McGraw-Hill Book Company, 1970. [38] M. W. Zemansky, “Heat and thermodynamics,” McGraw-Hill, 1968. [39] Y. R. Jeng and C. M. Tan, “Theoretical Study of Dislocation Emission around a Nanoindentation using a Static Atomistic Model,” Physical Review B, 69, 104, 2004. [40] Y. R. Jeng and C. M. Tan, “Study of Nanoindentation using FEM Atomic Model,” ASME Journal of Tribology, 126, 767, 2004. [41] S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and their Alloys,” Physical Review B, 33, 7983, 1986.
|