跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 17:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭兆希
研究生(外文):Chao-Hsi Cheng
論文名稱:液體動力軸承轉子系統在高量測雜訊下之混合強健式系統識別法之研究
論文名稱(外文):DEVELOPMENT OF A ROBUST HYBRID METHOD FOR IDENTIFICATION OF A ROTOR SYSTEM WITH HYDRODYNAMIC BEARING UNDER HIGH MEASUREMENT NOISE
指導教授:蕭庭郎蔡孟勳蔡孟勳引用關係
學位類別:博士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:122
中文關鍵詞:訊號濾波雜訊濾波奇異值分解轉子系統液體動力軸承系統識別
外文關鍵詞:noise filtereigensystem realization algorithmERASVDsingular value decompositionrotor systemhydrodynamic bearingsystem identificationsignal filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個針對多重輸出入的轉子軸承系統且受雜訊污染狀況下的混合式系統識別方法來有效提升識別精度。
混合法整合了卡曼濾波器(Kalman filter)及特徵系統實現法則(ERA)以決定系統的狀態空間模型。為了更有效地提高高頻模態的系統識別精度,亦提出第二種利用參雜最佳化訊號的系統識別方法來強化特徵系統實現法則(ERA)並完成整個方法的完整性。參雜訊號是藉由整合最佳化方法與奇異值分解(SVD)兩法而來,透過理論的推導,吾人可以解釋SVD有效率除雜訊的條件及參雜訊號有效的理由。
為了驗證所提出的方法,文中採用了轉子軸承系統來解釋與展現其高雜訊免疫力以及利用穩態響應得到多重輸出入狀態空間模型的能力且不論系統是耦合或是含有高頻模態。模擬結果顯示所提出之參雜最佳化訊號的特徵系統實現法在與單獨SVD技術或整合傳統Butterworth 濾波器的SVD技術做比較,均可有效的改善系統識別的精度, 因此最後, 即使在很低的訊雜比下雜訊的效應也可以被減弱。
This thesis proposes a specific methodology for hybrid system identification. This system can be used with multi-input, multi-output (MIMO), noise-polluted rotor-bearing systems, so as to increase identification accuracy. This hybrid method, which integrates a Kalman filter with an eigensystem realization algorithm (ERA), was developed to determine state space models. To further increase the accuracy of identifying high-frequency modes of systems, another identification methodology was developed to enhance the eigensystem realization algorithm (ERA), which entails doping an optimum signal, thereby providing all the methodology necessary for dealing with such systems.

The doping signal is obtained by integrating an optimization technique with the singular value decomposition (SVD) technique. Through theoretical derivation, we can interpret the effectiveness of the optimum signal and the sufficient conditions for removing the noise by SVD.
To demonstrate the capability of proposed methods, a rotor-bearing system has been adopted to explain and show the high noise-immunity, the capability of using a steady state response and obtaining a MIMO state space model, no matter the system is coupled or with high frequency mode. Simulation results show that the proposed ERA with a novel optimum signal can significantly improve system identification accuracy in comparison with the SVD technique alone or with the SVD technique combined with a traditional Butterworth filter in system identification of high frequency modes. Finally, the noise effect can be attenuated even under a low signal/noise ratio (S/N).
中文摘要
ABSTRACT
NOMENCLATURE
CHAPTER 1 INTRODUCTION
1.1 Background and Motivation
1.2 Literature review
1.3 Objective of present reaserch
1.4 Scope of present research
CHAPTER 2 MATHEMATICAL MODEL OF HYDRODYNAMIC BEARING
2.1 Pressure distribution of hydrodynamic
bearings
2.2 Numerical simulation for the Reynold
equation
2.3 Equation of motion of a dynamic rotor
system
2.4 Linearization of hydrodynamic
bearing systems
CHAPTER 3 KALMAN FILTER AND ERA METHOD
3.1 Direct Eigensystem Realization Algorithm
(ERA) identification
3.2 Direct Kalman filter identification
3.3 Kalman filter & eigensystem realization
algorithm(KFERA) identification
3.4 Numerical simulation and discussion
3.5 Preliminary Conclusions
CHAPTER 4 OPTIMUM DOPING SIGANL METHOD
4.1 Singular Value Decomposition(SVD)
Filtering Techniques
4.2 Sufficient conditions for separating signal and
noise by SVD
4.3 The theoretical derivation of the sufficient
conditions for separating signal from noise by
SVD
4.4 System identification for high frequency mode
by doping an optimum signal
4.5 Numerical simulation and discussion
4.6 Preliminary Conclusions
CHAPTER 5 CONCLUSION
5.1 Summary conclusions
5.2 Future Study

APPENDIX A Derivation for Reynolds
Equation
APPENDIX B Exact Solution for Reynolds
Equation of Long Bearing
APPENDIX C Eigensystem Realization
Algorithm(ERA)
APPENDIX D Kalman Filter Method
APPENDIX E Othogonality of Phase Shift
Signal
LIST OF FIGURE
LIST OF TABLE
REFERENCE
作者學經歷及著作文獻
[1]Juang , J.-N., 1994, “Applied system Identification”, Prentice-Hall, Englewood Cliffs, New Jersey.
[2]Juang , J.-N. and Pappa ,Richard S. 1986, ”Effects of Noise on Modal Parameters Identified by the Eigensystem Realization Algorithm”,Journal of Guidance, Control, and Dynamics, Vol. 9,No.3,May-June, pp.294-303
[3]Moonen, M., De Moor, B., Vandenberghe, L., and Vandewalle, J., 1989, “ On- and off-line identification of linear state-space models”, International Journal of Control, 49(1), 219-232
[4]Van Overschee, P., and De Moor, B., 1994, “Subspace algorithms for the identification of combined deterministic-stochastic systems”, Automatica, 30(1), 75-93
[5]Verhaegen, M., 1993, “Subspace model identification Part 3: Analysis of the ordinary output-error state-space model identification algorithm.”, International Journal of Control,58(3), 555-586
[6]Verhaegen, M., 1994,” Identification of the deterministic part of MIMO state space models given in innovations form from input-output data.”, Automatica, 30(1), 61-74
[7]Broomhead, D. S. and King-Gregory, P., 1986, “Extracting qualitative dynamics from experimental data”, Physica D 20, 217-236.
[8]Navarro-Esbri,J., Verdu, G., Ginestar, D. and Munoz-Cobo, J. L., 1998, “Reactor noise analysis based on the singular value decomposition(SVD)”, Ann. Nucl. Engery. Vol. 25 No.12, pp907-021
[9]Shin, K., Hammond, J.K. and White P. R., 1999, “Iterative SVD method for noise reduction of low-dimensional chaotic time series”, Mechanical Systems and Signal Processing, 13(1), 115-124
[10]Liu, K., 1996, “Modal parameter estimation using the state space method”, Journal of Sound and Vibration , 197(4), 387-402
[11]Allen, Myles R. and Smith, Leonard A., 1997,”Optimal filtering in singular spectrum analysis”, Physics Letters A, 234, 419-428
[12]Liu, Yi, and Jr. Shepard, W. Steve , 2005, “Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain”, Journal of Sound and Vibration”, 282, 37-60
[13]Qin, Q., Li, H. B., Qian, L. Z. and Lau, C.K., 2001, “Modal identification of Tsing Ma bridge by using improved eigensystem realization algorithm”, Journal of Sound and Vibration”, 247(2), 325-341
[14]Stanway, R., Burrows, C. R. and Holmes, R., 1978,” Pseudo-Random Binary Sequence Forcing in Journal and Squeeze-Film Bearings”, ASLE Transactions, vol. 22, n 4, Oct.
[15]Stanway,R., Burrows, C.R. and Homles, R., 1979, “Discrete-Time Modelling of a Squeeze Film Bearing”, Journal of Mechanical Engineering Science, vol. 21(6), pp.419-427.
[16]Ellis, J., Roberts, J.B., and Hosseeini Sianaki, A., 1988, “Comparison of Identification Method for Estimating Squeeze-Film Damper Coefficients”, ASME Journal of Tribology, vol. 110, pp. 119-127.
[17]Ellis, J., Roberts, J. B., and Hosseeini Sianaki, A., 1990,“ Complete Determination of Squeeze-film Linear dynamic Coefficients from Experimental Data” Journal of Tribology, Transactions of the ASME, vol. 112, n 4.
[18]Ellis, J., Roberts, J.B., and Ramli, M.D., 1989,“Experimental determination of squeeze-film dynamic coefficients using the state variable filter method of parametric identification”, Journal of Tribology, Transactions of the ASME, vol. 111, n 2, pp. 252-259.
[19]Zhang, J.X. and Roberts, J.B., 1994, “Identification of non-linear force coefficients for the radial motion of a squeeze film damper”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol.208, n4, 1994, pp. 235-245.
[20]Shiau, T. N., Kuo ,Chun Pao , Sheu, G. J. and Kuo, P.L., 1993, “Study on New Identification Technique with Application to Squeeze Film Bearing System”, American Society of Mechanical Engineers (Paper), International Gas Turbine and Aeroengine Congress and Exposition, May 24-27 1993, 93-GT-60, pp. 1-12.
[21]Esmonde, H., Axisa, F. Fitzpatrick, Rice ,J.A. and H.J., 1990,“Analysis of non-linear squeeze film dynamics. Part II. Experimental measurement and model verification”, American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, vol. 189, 1990, Flow-Induced Vibration - 1990, 1990 Pressure Vessels and Piping Conference, Jun 17-21 1990, pp. 179-184.
[22]Diaz, Sergio E. and San Andres, Luis A., 1999, “Method for identification of bearing force coefficients and its application to a squeeze film damper with a bubbly lubricant”, Tribology Transactions, vol.42, n4, 1999, pp. 739-746.
[23]Bellizzi, S., Bouc, R.Defilippi, and M.Guihot, P., 1998, “Response spectral densities and identification of a randomly excited non-linear squeeze film oscillator”, Mechanical Systems & Signal Processing, vol. 12, n 5, Sep, 1998, pp. 693-711.
[24]San Andres, L., Diaz, S.E. and Rodriguez, L.E. , 2001, “Sine sweep load vs. impact excitations and their influence on the damping coefficients of a bubbly oil Squeeze Film Damper”, Tribology Transactions, vol.44, n 4, 2001, pp. 692-698.
[25]Jiang, P.L. and Yu, L., 2000, “Identification of the oil-film dynamic coefficients in a rotor-bearing system with a hydrodynamic thrust bearing”, Journal of Sound and Vibration, vol.236, n4, Sep, 2000, pp. 733-740.
[26]Zhang, J.X. and Roberts, J.B., 1996, “Frequency domain parametric identification method for studying the non-linear performance of squeeze-film dampers”, Journal of Sound and Vibration, vol. 189, n2, Jan 18, 1996, pp. 173-191.
[27]Hassan, Fathy N., 1988, “Kalman Filter Model of a Squeeze-Film Bearing”, Modelling, Simulation & Control B: Mechanical & Thermal Engineering, Materials & Resources, Chemis, vol. 14, n 1, 1988, pp. 11-21.
[28]Badii, R., Broggi, G., Derighetti, B., Ravani, M., Ciliberto, S., Politi, A. and Rubio, M.A., 1988, ” Dimension increase in filtered chaotic signals”, Physical Review Letters 60,979-982
[29]Broomhead, D.S., Huke J.P., and Muldoon M.R., 1992, ”Linear filters and non-linear systems”, Journal of the Royal Statistical Society Series B—Methodological 54, 373-382.
[30]Schreiber, T., and Grassberger, P., 1991, “A simple noise-reduction method for real data”, Physics Letters A 160,411-418.
[31]Kostelich, E.J., and Schreiber, T., 1993, “Noise reduction in chaotic time-series data : a survey of common methods”, Physical Review E 48, 1752-1763.
[32]Jensen, S. H., Hansen, P.C., Hansen, S. D., and Sorensen, J.S., 1995, “Reduction of broad-band noise in speech by truncated QSVD”, IEEE Transactions on Speech and Audio Processing 3,439-448
[33]Noble, Ben and Daniel, James W., 2003,” Applied linear algebra”, 3rd ed., Prentice-Hall
[34]Leon, Steven J., 2002, “ Linear Algebra with applications “, 6th ed., Prentice Hall, Inc.
[35]Lin, Jun Lian, 1999, “ Control system mathematics”, 1st ed., Chung Hwa
[36]Ljung, Lennart., 1999, ”System identification theory for the user”, 2nd ed., Prentice-Hall,Inc.
[37]Shiau, T. N., Tsai, M.S. and Cheng, C.H., 2003,” State Space Identification of Nonlinear Hydrodynamic Bearing by Eigensystem Realization Algorithm (ERA)”, Proceedings of ASME Turbo Expo 2003 ,
[38]Rao,J.S.,”Rotor dynamics”, 3rd ed.,1996, New Age International(P) Limited.
[39]Ogata,Katsuhiko, 1987, “ Discrete-Time Control System”, Prentice-Hall International Editions.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top