跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 21:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖慶安
研究生(外文):Qing-An Liao
論文名稱:銅晶片以熱音波覆晶銲著於硬性與軟性基板之研究
論文名稱(外文):Study on the Thermosonic Flip Chip Bonding of Chips with Copper Interconnect onto rigid and flex substrate
指導教授:敖仲寧敖仲寧引用關係
指導教授(外文):J. N. Aoh
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:103
中文關鍵詞:超音波覆晶接合製程非導電膠軟性基板氧化鋁基板
外文關鍵詞:Ultrasonic flip-chip bonding processalumina substrateflex substratenon-conductive paste(NCP)
相關次數:
  • 被引用被引用:7
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本研究發展熱音波鍵合技術應用於銅晶片與氧化鋁基板之覆晶接合製程,探討覆晶接合後製程參數與高溫儲存可靠度對接合強度之影響,並利用推力試驗證實了接合強度皆符合標準。製程參數包含超音波必v、接合負荷、接合時間。超音波必v提高,使金凸塊產生變形,且提高其接合強度;接合負荷與接合強度成正比,但接合負荷超過995gf時,接合強度維持一定値,而金凸塊與氧化鋁基板緊密貼合。
接合時間太短,必v所需能量不夠,金凸塊與氧化鋁基板無法接合。接合時間太長,必v所需能量太高,使金凸塊與銅晶片的接著層分離,接合強度下降。經高溫儲存測試後,得知持溫時間增加而接合強度提高;觀察接合處界面,發現接合處無缺陷存在,故高溫儲存之可靠度無疑慮。並求得其較理想的參數組合為超音波必v4.52 W,接合負荷995 gf,接合時間0.5 sec,接合溫度200℃。
本研究另ㄧ重點以銅晶片藉由非導電膠接合於軟性基板之超音波覆晶接合製程研究,由金凸塊與軟性基板接合的顯微結構與剝離強度,探討其接合製程之機理。製程參數包含超音波必v、接合負荷、固化溫度、固化時間,其參數中影響最大為超音波必v。超音波可將塗佈於軟性基板之非導電膠刮除,使金凸塊與軟性基板上銅墊接合,形成電路導通訊號,完成構裝。接合負荷太大,造成銅晶片與軟性基板間之非導電膠填充量過少,接合強度下降。固化溫度太低,非導電膠固化程度不夠,接合強度下降,反之其接合強度提高。固化時間增加,接合強度並無明顯變化。並求得理想的參數組合為超音波必v14.46 W,接合負荷500 gf,固化溫度140℃,固化時間40 sec,接合時間0.5 sec,銅晶片預接合溫度200℃。

關鍵詞:超音波覆晶接合製程、氧化鋁基板、軟性基板、非導電膠。
In this study, thermosonic bonding was applied to flip chip bonding of Cu chip to alumina substrate. The effect of flip chip bonding parameters and high temperature storage(HTS) on the shear strength was discussed. Investigation of bonding strength variation with die shear test was conducted. It has been verified that the bonding strength beyond the standard value was achieved. The effect of flip chip parameters including ultrasonic power, bonding force and bonding time was studied.
High ultrasonic power resulted in deformation of gold stud bumps and achieved greater bonding strength between chip and substrate. The bonding strength first increased with increasing bonding force then the bonding strength remained a steady value, the gold stud bumps and alumina substrate revealed a satisfactory bonding when bonding force higher than 995 gf. Too short a bonding time and insufficient ultrasonic power resulted in poor bonding between the gold stud bumps and alumina. Too long a bonding time and too high a ultrasonic power caused separation between gold stud bumps and silver layer and resulted in poor bonding strength.
The bonding strength increased with increasing hold temperature after HTS test. Investigation on the bonding morphology between gold stud bump and silver layer revealed a defect free interface, thus the reliability of HTS for gold stud bumps onto the silver bonding layer was not a issue of concern. The optimal processing parameters are as following:ultrasonic power 4.52 W, bonding force 995 gf, bonding time 0.5 sec, bonding temperature 200℃.
A further objective of this study was to investigate the bonding of Cu chip onto flex substrate with the addition of non-conductive paste(NCP). The effect of flip chip bonding parameters including ultrasonic power, bonding force, curing temperature and curing time were investigated. We found that the ultrasonic power was the most relevant process parameter. The ultrasonic power play an important role in removing partly NCP on flex substrate during bonding process, so that gold stud bump could bond onto copper electrode layer to form an electrical path between the gold stud bump and the flex substrate.
Too large a bonding force caused insufficient filling of NCP paste as an underfill between Cu chip and resulted in deterioration of bonding strength. Too low a curing temperature caused insufficient cure of NCP and resulted in lower bonding strength. The optimal processing parameters achieved in the study were as following:ultrasonic power 14.46 W, bonding force 500 gf, curing temperature 140 ℃, curing time 40 sec, bonding time 0.5 sec, Cu chip prior temperature 200℃.

Keywords:Ultrasonic flip-chip bonding process, alumina substrate, flex substrate, non-conductive paste(NCP).
誌謝 ..I
中文摘要 ..II
英文摘要 .III
目錄 .V
表目錄 ....VIII
圖目錄 ...IX

第一章 緒論 .1
1-1 前言 .1
1-2 文獻回顧 .2
1-3 研究動機與目的 10
第二章 覆晶接合技術簡介 12
2-1 覆晶接合.. 12
2-1-1 覆晶製程簡述 13
2-1-2 熱超音波覆晶鍵合原理 13
2-1-3 覆晶接合技術 14
2-2 覆晶薄膜 15
2-3 膠式覆晶 16
第三章 研究方法流程與實驗方法 18
3-1 研究方法及流程 18
3-2 實驗材料 20
3-2-1 銅晶片之選用與製備 20
3-2-2 氧化鋁基板之選用與製備 21
3-2-3 軟性基板之選用與製備 ……..21
3-2-4 金球凸塊 …....22
3-3 實驗設備與操作步驟 ....23
3-3-1 熱音波覆晶機 23
3-3-2 掃瞄式電子顯微鏡 24
3-3-3 金相實驗之儀器 ...........24
3-3-4 微型銲點強度試驗機 27
3-3-5 微拉伸試驗機 27
3-4 銅晶片接合於氧化鋁基板製程 28
3-4-1 實驗目的 28
3-4-2 銅晶片接合於氧化鋁基板製程參數 28
3-5 推力剪力模式 29
3-6 金凸塊/銅墊之高溫儲存測試(HTS) 30
3-6-1 實驗目的 30
3-6-2 實驗方法與步驟 30
3-7 銅晶片藉由非導電性膠接合於軟性基板製程 31
3-7-1 實驗目的 31
3-7-2 銅晶片藉由非導電性膠接合於軟性基板製程參數 32
第四章 銅晶片與氧化鋁基板熱音波覆晶接合.......................................................34
4-1 銅晶片與氧化鋁基板之銲著率 34
4-2 銅晶片與氧化鋁基板之接合製程參數討論 35
4-3 金凸塊與氧化鋁基板上接著層之EDS分析 44
4-4 晶片剪力測試之破裂模式分析 46
4-5 高溫儲存可靠度分析 49
4-6 銅晶片接合於氧化鋁基板之綜合歸納 52
第五章 銅晶片與軟性基板熱音波覆晶接合...........................................................53
5-1 非導電膠之流動與固化分析 ..53
5-2 銅晶片與軟性基板接合介面觀察 55
5-3 銅晶片藉由非導電性膠接合於軟性基板之製程參數討論................59
5-4 軟性基板上銅墊銲著面之歐傑電子成像分析
(Auger mapping)…………………………………………..……..75
5-5 銅晶片藉由非導電性膠接合於軟性基板之綜合歸納….......…..78
第六章 結論及未來研究方向 ........79
6-1 結論………………………………………...………..….... ….....…79
6-2 未來研究方向………………………………………………………80
參考文獻 …..81
作者簡介 …..87
[1]鐘文仁,陳佑任 編著,“IC封裝製程與CAE應用”,全華科技圖書股份有限公司,2005年
[2]盧思維, 新世代IC 構裝之趨勢與機會研討會精要.- 摘自PRISM-ARK, 覆晶及銅晶片構裝聯盟季刊, No. 4, 2000年, p.5.
[3]福岡義孝 著,陳信文 審?“電子構裝技術”, 普林斯頓國際有限公司, 2005年
[4] 沈更新, ” LCD驅動IC之封裝與現況”,電子與材料雜誌,14期,
2003, p26.
[5]S. Hymes and S. P. Murarka, “Passivation of Copper by Silicide Formation in Dilute Siliane”, Journal of Applied Physics, 1992, p. 4623.
[6]J. N. Aoh, C. L. Chuang and R. F. Ding, “On the Oxidation Behavior of Sputtered Copper Film on Si Wafer,” Journal of Material Science and Engineering, CSMS, Vol. 34, No.1, 2002, p.1.
[7]J.N. Aoh and C.L. Chuang,“ Thermosonic Bonding of Gold Wire onto Copper pad with Titanium Thin Film Deposition”, Journal of Electronic Materials, Vol.33, 2004, p.290.
[8] Jian Li and J.W. Mager, “Oxidation and Protection in Copper and Copper Alloy Thin Films”, Journal of Applied Physics, 1991, p. 2820.
[9]吳勝富, 在惰性氣體氣氛下進行銅晶片熱音波銲線製程的研究,國立中正大學機械工程研究所碩士論文, 2003年
[10]莊正利, 銅內導線晶片之熱音波銲線製程與銲合機理研究,國立中正大學機械工程研究所博士論文, 2004年
[11]J.H. Lau,“Flip-chip Technologies”,New York, McGraw-Hill, 1996.
[12]K. Yutaka, T. Yoshihiro, I. Minehiro and B. Yoshihiro, “Development of chip-on-flex using SBB flip-chip technology”, Microelectronics Reliability, Vol.41, 2001, p.525.
[13]J.G. Strandjord, S. Popelar and C. Jauernig, “Interconnectingto Aluminum and Copper Based Semiconductors”, Microelectronics Reliability, Vol.42, 2002, p.265.
[14] K.M. Chen and K.N. Chiang, “Impact of probing procedure on flip Chip reliability”, Microelectronics Reliability, Vol.43, 2003, pp123.
[15]J. Ida, M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A.Kita and M. Ino, Proceedings of VLSI Technology Symposium, 1994, p.59.
[16]K. Amami, S. Yuhaku and T. Shiraishi, ” Stud bump bonding to an advanced organic substrate for MCM-L”, International Conference Multichip Modules, 1997, p.109.
[17]http//www.smtinline.com/index-en.html
[18]http//www.filp-chip.com/photos/arraybump6
[19]釩T傑, 銅導線晶片上之植金球凸塊接合研究, 國立中正大學機械工程學系碩士論文, 2005年
[20]H. Maruo, Y. Selu and Y. Unami,“ Development of Ultrasonic Flip Chip Bonding for Flexible Printed Circuit”,IEEE Proceeding of HDP''04, 2004, p.307.
[21]C. Chak-Hau PANG, Kin-Yik HUNG & Man-Lung SHAM“High Frequency Thermosonic Flip Chip Bonding for Gold to Gold Interconnection”, IEEE Electronic Components and Technology Conference, 2004, p.1461.
[22]T. Tomioka , T. Iguchi and I. Mori,“Thermosonic Flip-chip bonding for SAW filter”, Microelectronics Reliability, 2004, p.149.
[23]M. Klein, H. Oppermann, R. Kalicki, R. Aschenbrenner and H. Reichl, “Single chip bumping and reliability for flip chip processes ”, Microelectronics Reliability, Vol. 39, 1999, p.1389.
[24]R. Aschenbrenner, “Flip chip attachment using non-conductive adhesives and gold ball bumps”, Int Journal of Microcircuits and Electronic Packaging, Vol.18, 1995, p.154.
[25]J. Nave,“Flip chip attachment of silicon and GaAs devices on ceramic, silicon and organic substrates using thermocompression bonding.”, Proc. ITAP''96, Sunnyvale, CA. 1996, p.90.
[26]T.A. Min, S. P.-S. Lim, A. Yeo and C. Lee,“Influence of Bump Geometry, Adhesives and Pad Finishing on the Joint Resistance of Au Bump and A/NC a Flip Chip Interconnection”, IEEE Electronics Packaging Technology Conference, Vol.1, 2005,
p.797.
[27] J.C. Jagt,“Reliability of electrically conductive adhesive joints for surface mount applications: a summary of the state of the art” ,IEEE Trans Comp, Packaging, Manuf Technogly-Part A. Vol. 21, 1998, p.215.
[28]P. Palm, J. Maattanen, A. Tuominen and E.Ristolainen,“Reliability of 80um pitch flip chip attachment on flex”, Microelectronics Reliability, Vol. 40, 2001, p.633.
[29]W.-S. Kwon, K.-W. Jang and K.-W. Paik,“High Reliable Non-Conductive Adhesives for Flip Chip Interconnections”, IEEE Int`l Symposium on Electronic Materials and Packaging, 2001, p.34.
[30]Y.-T. Hsieh,“Reliability and Failure mode of Chip-on-Film with Non-conductive adhesive”, IEEE Int`l Symposium on Electronic Materials and Packaging, 2002, p.157.
[31] M.A. Uddin, M.O. Alam, Y.C. Chan and H.P. Chan, “Adhesion strength and contact resistance of flip chip on flex packages effect of curing degree of anisotropic conductive film”, Microelectronics Reliability, Vol.44, 2004, p. 505.
[32] S. C. Tan, Y. C. Chan, and Nelson S. M. Lui,“The Effect of Different Bonding Temperatures on the Mechanical and Electrical Performance of NCF-Bonded Flip-Chip-on-Flex Packages”, IEEE Transactions on Advanced Packaging,Vol.292, 2006, p.570.
[33]陳立仁, 超音波銲線機銲頭型態及製程參數對銲點品質之影響研究, 國立中正大學機械研究所碩士論文 , 1997年
[34]陳大殿, 電子構裝熱音波銲線製程分析研究, 國立中正大學機械研究所碩士論文 , 1999年
[35]陳慧昌, 晶元尺寸構裝之銲線製程研究分析, 國立中正大學機械研究所碩士論文 , 2000年
[36]丁榮豐, 銅晶片熱音波銲線製程參數研究與銲合界面分析, 國 立中正大學機械 研究所碩士論文 , 2001年
[37]L. Li and T. Fang, ”Anisotropic conductive adhesive films for flip chip on flex packages”, Adhesive Joint and Coating Technology in Electronics Manufacturing Proceedings. 4th International Conference, 2000, p. 129.
[38]Y.C. Chan, K.C. Hung, C.W. Tang and C.M.L. Wu, ”Degradation mechanisms of anisotropic conductive adhesive joints for flip chip on flex applications”, Adhesive Joint and Coating Technology in Electronics Manufacturing Proceedings. 4th International Conference, 2000, p. 141.
[39]F. Ferrrando, J.F Zeberli, P. Clot and J.M Chenuz, ”Industrial approach of a flip chip method using the stud bumps with a non-conductive paste”, Adhesive Joint and Coating Technology in Electronic Manufacturing Proceedings. 4th International Conference, 2000, p.205.
[40]R. Aschenbrenner, R. Miessner and H. Reichl, ”Adhesive flip chip bonding on flexible substrate”, The proceeding of the first IEEE international Symposium on Polymer Electronics Packaging, 1997, p.84.
[41]R. Aschenbrenner, ”Flip Chip Attachment using Non-conductive Adhesives and Gold Ball Bumps”, Proceeding of IEPS , 1994.
[42]Y.C. Chan and D.Y. Luk, “Effects of bonding parameters on the reliability performance of anisotropic conductive adhesive interconnects for flip-chip-on-flex packages assemble II. Different bonding pressure”, Microelectronic Reliability, Vol.42, 2002, p. 1195.
[43]R. Aschenbrenner, J. Gwiasda, J. Eldring, E. Zakel and H.Reichl,”Gold ball bumps for adhesive flip chip assembly”, KARL SUSS, 1999.
[44]Tummala編著,陳信文,陳立軒,林永森,陳志銘 編譯,“微系統構裝基礎原理”, 高立圖書股份有限公司, 2002年
[45]徐嘉彬,劉俊賢,“熱超音波覆晶鍵合製程設備技術”, 工業技術研究院之機械工業雜誌258期
[46]田民汶 編著,顏怡文 修訂,“半導體電子元件構裝技術”, 五南圖書出版股份有限公司, 2005年
[47]陳信文,陳立軒,林永森,陳志銘 編著,“電子構裝技術與材料”,高立圖書股份有限公司, 2004年
[48]黃淑禎,陳凱琪,李巡天, “異方性導電膠膜材料及非導電性絕緣接合材料技術與發展趨勢”, 工業技術研究院材料所,半導體科技NO.39, 2003年9月
[49]G.G. Harman, Wire Bonding in Microelectronics Materials, Processes and Yield, second edition, 1997.
[50]EIA/JEDEC STANDARD, Wire Bond Shear Test EIA/JESD22-B116, Electronic Industries Alliance, Arlington, VA, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top