跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 06:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余佾耿
研究生(外文):Yi-Geng Yu
論文名稱:P3HT之電場控制聚合成長與去水氣研究
論文名稱(外文):A Study on In-situ Electrochemical Polymerization of P3HT and Removal of Its Moisture Content
指導教授:鄭榮偉
指導教授(外文):J. W. Cheng
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:61
中文關鍵詞:電場控制聚合去水氣
外文關鍵詞:Electrochemical PolymerizationP3HT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機薄膜電晶體有大面積、低成本製造與可撓的特性。然而,現今有機薄膜電晶體的載子遷移率依然過低,例如以高分子材料為主動層的元件,其載子遷移率大約皆小於1 cm2/Vs,因此限制了有機薄膜電晶體的應用範圍。
本實驗室於去年提出以”控制聚合成長” (CEP) 的方法來製作有機薄膜電晶體的主動層,本文以去年在SPAN材料上實驗成果為基礎,將”控制聚合成長”的方法引用至目前最為廣泛研究的P3HT材料上進行研究,探討此方法的可行性,並針對所電聚合出的P3HT高分子進行光譜、表面形貌與電性上的量測; 不幸的,以”控制聚合成長”的方法來製作有機薄膜電晶體時,會有殘餘電解質的影響,使得以CEP方式製作成的電晶體會有化學摻雜的問題,而失去原本場效應的特性。
在做去離子摻雜的過程中,我們發現了一種低溫去水氣的方法,能取代傳統使用熱處理的方式去除P3HT有機薄膜電晶體中水氣造成的摻雜問題。
Organic thin film transistors (OTFTs) have a great potential for future electronics due to its possible benefits of large-area, low-cost manufacture, and flexible devices. However, the carrier mobilities of all reported OTFTs are still too low for most practical applications. For example, the highest carrier mobilities of polymeric OTFTs is even less than 1 cm2/Vs, the average mobility of amorphous-silicon TFTs.
In last year, a new approach named the “Controlled Electrical Polymerization (CEP)” was proposed by our group using the conjugated polymer, SPAN (Sulfonated Polyaniline). In this thesis, we tried to extend the CEP method to the most common used conjugated polymer P3HT (poly(3-hexylthiophene)) and conduct a full scale study of the CEP method. The surface morphology, optical and electric properties of CEP fabricated OTFTs were characterized and investigated. Unfortunately, because of the residual electrolyte from the polymerization, the CEP fabricated P3HT devices behave more like chemical doped TFTs than the desired field effect TFTs.
Besides, we proposed a new method to remove the moisture from organic materials at room temperature. Because of the room temperature operation, the proposed method will prove to be useful when the conventional removal of moisture by external heating is prohibited.
目錄
第一章 緒論 1
1-1. 研究動機與目的 1
1-2. 研究方法 2
1-3. 貢獻 3
第二章 文獻回顧 4
2-1. 電晶體操作模式與載子遷移率的計算方法 4
2-1-1. 有機薄膜電晶體操作模式 4
2-1-2. 載子遷移率的計算方法 5
2-1-3. 電化學摻雜遷移率 9
2-2. 文獻回顧 10
第三章 可控制之電聚合 14
3-1. 電場控制聚合成長(CEP)概念 14
3-2. 電化學聚合P3HT的原理 15
第四章 實驗結果與討論 16
4-1. 實驗概觀 16
4-2. 實驗設備與材料 17
4-3. 實驗0 先前準備工作 18
4-4. 實驗1 電場控制聚合成長 20
4-4-1. 實驗目的 20
4-4-2. 實驗設計 20
4-4-3. 預期成果 21
4-4-4. 結果與討論 21
4-5. 實驗2 UV-VIS與FTIR量測 22
4-5-1. UV-VIS量測 22
4-5-1-1. 實驗目的 22
4-5-1-2. 實驗設計 22
4-5-1-3. 預期成果 22
4-5-1-4. 結果與討論 22
4-5-2. FTIR量測 24
4-5-2-1. 實驗目的 24
4-5-2-2. 實驗設計 24
4-5-2-3. 預期成果 24
4-5-2-4. 結果與討論 25
4-6. 實驗3 SEM與AFM表面形貌量測 26
4-6-1. 實驗目的 26
4-6-2. 實驗設計 26
4-6-3. 預期成果 26
4-6-4. 結果與討論 27
4-7. 實驗4 半導體特性量測 35
4-7-1. 實驗目的 35
4-7-2. 實驗設計 35
4-7-3. 預期成果 36
4-7-4. 結果與討論 36
4-8. 實驗5 去離子摻雜 38
4-8-1. 實驗目的 38
4-8-2. 實驗設計 38
4-8-3. 預期成果 38
4-8-4. 結果與討論 38
4-9. 實驗6 電化學摻雜遷移率 40
4-9-1. 實驗目的 40
4-9-2. 實驗設計 40
4-9-3. 預期成果 40
4-9-4. 結果與討論 40
第五章 低溫去水氣製程於有機薄膜電晶體之應用 44
5-1. 前言 44
5-2. 原理 44
5-3. 實驗方式 45
5-4. 實驗結果與討論 45
5-5. 結論與改善 46
5-6. 結論 47
5-7. 未來工作 47
文獻 48
附錄A 56
附錄B 60
[1].C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic thin-film transistors: A review of recent advances,” IBM J. Res. & Dev., vol. 45, pp. 11-26, 2001
[2].Colin Reese, Mark Roberts, M. M. Ling and Zhenan Bao,”Organic thin film transistors,” Materials Today, vol. 7, pp. 20-27, 2004
[3].江晟鎰,”發展新型製程方法以提升有機薄膜電晶體的載子遷移率”,2006
[4].M. Su, L. Fu, N. Wu, M. Aslam, and V. P. Dravid, “Individually addressed large-scale patterning of conducting polymers by localized electric fields,” Appl. Phys. Lett., vol. 84, pp. 828-830, 2004
[5].施敏,”半導體元件物理與製作技術”,2002
[6].G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “The oligothiophene-based field-effect transistor: How it works and how to improve it,” J. Appl. Phys., vol. 67, pp. 528-532, 1990
[7].H. Shimotani, G. Diguet, and Y. Lwasa, “Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene),” Appl. Phys. Lett., vol. 86, pp. 022104-1~022104-3, 2005
[8].M. M. Ling, and Z. Bao, “Thin Film Deposition, Patterning, and Printing in Organic Thin Film Transistors,” Chem. Mater., vol. 16, pp. 4824-4840, 2004
[9].C. C. B. Bufon and T. Heinzela, “Polypyrrole thin-film field-effect transistor,” Appl. Phys. Lett., vol. 89, pp. 012104-1~012104-3, 2006
[10].A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett., vol. 49, pp.1210-1214, 1986
[11].Z. Bao, and A. Dodabalapur, A. J. Lovinger, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film,” Appl. Phys. Lett., vol. 69, pp. 4108-4110, 1996
[12].Z. Bao, Y. Feng, A.Dodabalapur, V. R. Raju, and A. J. Lovinger, “High-Performance Plastic Transistors,” Chem. Mater., vol. 9, pp. 1299-1301, 1997
[13].H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, vol. 280, pp.1741-1744, 1998
[14].H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. Janssen, E. W. Meijer, P. T. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, vol. 401, pp. 685-688, 1999
[15].G. H. Gelinck, T. C. T. Geuns, and D. M. de Leeuw, “High-performance all-polymer integrated circuits,” Appl. Phys. Lett., vol. 77, pp. 1487-1489, 2000
[16].G. Lloyd, M. Raja, I. Sellers, N. Sedghi, R. D. Lucrezia, S. Higgins, B. Eccleston, “The properties of MOS structures using conjugated polymers an the semiconductor,” Microelectron. Eng., vol. 59, pp. 323-328, 2001
[17].G. Lloyd, and B. Eccleston, “Conjugated Polymer Thin Film Transistors Constructed using Ohmic and Schottky Source/Drain Contacts,” Mat. Res. Soc. Symp. Proc., vol. 660, pp. JJ5.12.1-JJ5.12.6, 2001
[18].M. Halik, H. Klauk, U. Zschieschang, T. Kriem, G. Schmid, W. Radlik, and K. Wussow, “Fully patterned all-organic thin film transistors,” Appl. Phys. Lett., vol. 81, pp. 289-291, 2002
[19].W. Fix, A. Ullmann, J. Ficker, and W. Clemens, “Fast polymer integrated circuits,” Appl. Phys. Lett., vol. 81, pp. 1735-1737, 2002
[20].S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, and W. K. Kim, “High-Performance Polymer TFTs Printed on a Plastic Substrate,” IEEE Trans. Electron. Dev., vol. 49, pp. 2008-2015, 2002
[21].H. G. O. Sandberg, G. L. Frey, M. N. Shkunov, H. Sirringhaus, R. H. Friend, M. M. Nielsen, and C. Kumpf, “Ultrathin Regioregular Poly(3-hexylthiophene) Field-Effect Transistors,” Langmuir, vol. 18, pp. 10176-10182, 2002
[22].M. D. Austin, and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography,” Appl. Phys. Lett., vol. 299, pp.4431-4433, 2002
[23].M. Raja, G. Lloyd, N. Sedghi, R, D. Lucrezia, S. J. Higgins, and W. Eccleston, “Improved Thin Film Transistor (TFT) performanc using factionated Poly-3-hexylthiophene(P3HT) ,” Mat. Res. Soc. Symp. Proc., vol. 708, pp. BB10.56.1-BB10.56.6, 2002
[24].N. Stutzman, R. H. Friend, and H. Sirringhaus, “Self-Aligned, Vertical-Channel,Polymer Field-Effect Transistors,” Science, vol. 299, pp.1881-1885, 2003
[25].G. Wang, J. Swenson, D. Moses, and A. J. Heeger, “Increased mobility from regioregular poly(3hexylthiophene) field-effect transistors,” J. Appl. Phys., vol. 93, pp. 6137-6141, 2003
[26].J. Ficker, A. Ullmann, W. Fix, H. Rost, and W. Clemens, “Stability of polythiophene-based transistors and circuits,” J. Appl. Phys., vol. 94, pp. 2638-2641, 2003
[27].E. L. Brandon, W. West, and E. Wesseling, “Carbon-based printed contacts for organic thin-film transistors,” Appl. Phys. Lett., vol. 83, pp. 3945-3947, 2003
[28].H. Heil, T. Finnberg, N. V. Malm, R. Schmechel, and H. V. Seggern,“The influence of mechanical rubbing on the field-effect mobility in polyhexylthiophene,” J. Appl. Phys., vol. 93, pp. 1636-1641, 2003
[29].R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. frechet, “Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight,” Adv. Mater., vol. 15, pp. 1519-1522, 2003
[30].J. A. Merlo, and C. D. Frisbie, “Field Effect Conductance of Conducting Polymer Nanofibers,” Concucting Polymer Nanofibers, pp. 2674-2680, 2003
[31].B. A. Mattis, P. C. Chang, and V. Subramanian, “Effect of thermal cycling on performance of Poly(3-hexylthiophene) Transistors,” Mat. Res. Soc. Symp. Proc., vol. 771, pp. L10.35.1-L10.35.6, 2003
[32].S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, W. K. Kim, and M. G. Kwak, “Electrical characteristics of Poly(3-hexylthiophene) thin film transistors printed and spin-coated on plastic substrates,” Synthetic Metals, vol. 139, pp.377-384, 2003
[33].A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf, and D. Neher, “Effect of Molecular Weight and Annealing of Poly(3-hexylthiophene)s on the Performance of Organic Field-Effect Transistors,” Adv. Funct. Mater., vol. 14, pp. 757-764, 2003
[34].B. Ong, Y. Wu, L. Jiang, P. Liu, and K. Murti, “Polythiophene-based field-effect transistors with enhanced air stability,” Synthetic Metals, vol. 142, pp. 49-52, 2004
[35].J. Veres, S. Ogier, and G. Lloyd, “Gate Insulators in Organic Field-Effect Transistors,” Chem. Mater., vol. 16, pp. 4543-4555, 2004
[36].G. Wang, D. Moses, A. J. Heeger, H. M. Zhang, M. Narasimhan, and R. E. Demaray, “Poly(3-hexylthiophene)field-effect transistors with high dielectric constand gate insulator,” J. Appl. Phys., vol. 95, pp. 316-322, 2004
[37].H. Fukudaa, M. Isea, T. Kogurea, N. Takanob, “Gas sensors based on poly-3-hexylthiophene thin-film transistors,” Thin Solid Films, vol. 464–465, pp. 441– 444, 2004
[38].S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata, and K. Yase, “Influence of moisture on device characteristics of polythiophene-based field-effect transistors,” Appl. Phys. Lett., vol. 95, pp. 5088-5093, 2004
[39].G. Wang, T. Hirasa, D. Moses, and A. J. Heeger, “Fabrication of regioregular poly(3-hexylthiophene) field-effect transistors by dip-coating,” Synthetic Metals, vol. 146, pp. 127-132, 2004
[40].J. F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch, and H. Sirringhaus, “Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents,” Chem. Mater., vol. 16, pp. 4772-4776, 2004
[41].H. Rost, J. Ficker, J. S. Alonso, L. Leenders, and I. McCulloch, “Air-stable all-polymer field-effect transistors with organic electrodes,” Synthetic Metals, vol. 145, pp. 83-85, 2004
[42].J. Park, S. Y. Park, S. O. Shim, H. Kang, and H. H. Lee, “A polymer gate dielectric for high-mobility polymer thin-film transistors and solvent effects,” Appl. Phys. Lett., vol. 85, pp. 3283-3285, 2004
[43].R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Frechet, and M. F. Toney, “Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight,” Macromolecules, vol. 38, pp. 3312-3319, 2005
[44].H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, “Effect of Mesoscale Crystalline Structure on the Field-Effect Mobility of Regioregular Poly(3-hexyl thiophene) in Thin-Film Transistors,” Adv. Funct. Mater., vol. 15, pp. 671-676, 2005
[45].R. Gonzalez, and N. J. Pinto, “Electrospun poly(3-hexylthiophene-2,5-diyl) fiber field effect transistor,” Synthetic Metals, vol. 151, pp. 275–278, 2005
[46].L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, “General observation of n-type field-effect behaviour in organic semiconductors,” Nature, vol. 434, pp. 194-199, 2005
[47].Y. D. Park, D. H. Kim, Y. Jang, M. Hwang, J. A. Lim, and K. Cho, “Low-voltage polymer thin-film transistors with a self-assembled monolayer as the gate dielectric,” Appl. Phys. Lett., vol. 87, pp.243509-1~203509-3, 2005
[48].F. Xue, Y. Su, and K. Varahramyan, ”Modified PEDOT-PSS Conducting Polymer as S/D Electrodes for Device Performance Enhancement of P3HT TFTs,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 52, pp. 1982-1987, 2005
[49].J. Park, S. O. Shim, and H. H. Lee, “Polymer thin-film transistors fabricated by dry transfer of polymer semiconductor,” Appl. Phys. Lett., vol. 86, pp. 073505-1~073505-3, 2005
[50].D. M. Russell, C. J. Newsome, S. P. Li, T. Kugler, M. Ishida, and T. Shimoda, “Blends of semiconductor polymer and small molecular crystals for improved-performance thin-film transistors,” Appl. Phys. Lett., vol. 87, pp. 222109-1~ 222109-3, 2005
[51].S. Scheinert, G. Paasch, I. Horselmann, and A. Herasimovich, “Influence of source/drain contacts on sub-micrometer organic field-effect transistors,” Phy. Stat. Sol., vol. 202, pp. R82-R84, 2005
[52].L. A. Majewski, and M. Grell, “Organic field-effect transistors ith ultrathin modifield gate insulator,” Synthetic Metals, vol. 151, pp. 175-179, 2005
[53].H. Nishimura, M. Iizuka, M. Sakai, M. Nakamura, and K. Kudo, “Poly(3-hexylthiophene) Field-Effect Transistor with Controllable Threshold Voltage,” Jpn. J. Appl. Phys., vol. 44, pp. 621-625, 2005
[54].M. J. Joung, C. A. Kim, S. Y. Kang, K. H. Baek, G. H. Kim, S. D. Ahn, I. K. You, J. H. Ahn, and K. S. Suh, “The application of soluble and regioregular poly(3-hexylthiophene) for organic thin-film transistors,” Synthetic Metals, vol. 149, pp. 73–77, 2005
[55].T. G. Backlund, H. G. O. Sandberg, R. Osterbacka, H. Stubb, T. Makela, and S. Jussila, “Towards all-polymer field-effect transistors with solution processable materials,” Synthetic Metals, vol. 148, 2005
[56].H. Kang, J. Park, and H. H. Lee, “Active Area and Channel Formation for Polymer Thin-Film Transistors,” Adv. Mater., vol. 18, pp. 1603–1606, 2005
[57].M. J. Panzer, and C. D. Frisbie, “High Carrier Density and Metallic Conductivity in Poly(3-hexylthiophene) Achieved by Electrostatic Charge Injection,” Adv. Funct. Mater., vol.16, pp. 1051–1056, 2006
[58].R. C. G. Naber, M. Mulder, B. de Boer, P. W. M. Blom, D.M. de Leeuw, “High charge density and mobility in poly(3-hexylthiophene)using a polarizable gate dielectric,” Organic Electronics, vol. 7, pp. 132–136, 2006
[59].J. Park, S. Lee, and H. H. Lee, “High-mobility polymer thin-film transistors fabricated by solvent-assisted drop-casting,” Organic Electronics, vol. 7, pp. 256–260, 2006
[60].F. Xue, Z. Liu, Y. Su, and K. Varahramyan, “Inkjet printed silver source-drain electrodes for low-cost polymer thin film transistors,” Microelectronic Engineering, vol. 83, pp. 298–302, 2006
[61].E. Itoh, K. Miyairi, “Interfacial charge phenomena at the semiconductor/gate insulator interface inorganic field effect transistors,” Thin Solid Films, vol. 499, pp.95-103, 2006
[62].J. F. Chang, J. Clark, N. Zhao, H. Sirringhaus, D. W. Breiby, J. W. Andreasen, M. M. Nielsen, M. Giles, M. Heeney, and I. McCulloch, “Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers,” Physical Review B, vol. 74, pp. 115318-1~115318-12, 2006
[63].Y. H. Kim, J. I. Han, and D. G. Moon, “Organic Thin-Film Transistors on Flexible Substrates,” Journal of the Korean Physical Society, Vol. 48, pp. S118-S122, 2006
[64].E. Said, X. Crispin, L. Herlogsson, S. Elhag, N. D. Robinson, and M. Berggren, “Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film,” Appl. Phys. Lett., vol. 89, pp.143507-1~14507-3, 2006
[65].M. Surin, P. Leclere, R. Lazzaroni, I. D. Yuen, G. Wang, D. Moses, and A. J. Heeger, S. Cho, and K. Lee, “Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors,” J. Appl. Phys., vol. 100, pp. 033712-1~033712-6, 2006
[66].G. Sauve, R. Zhang, S. Jia,T. Kowalewski, R. D. McCullough, “Synthesis, mobility, and conductivity of well-defined regioregular poly(3-hexylthiophene) and diblock copolymers of regioregular poly(3-hexylthiophene) ,” Proc. of SPIE, Vol. 6336, pp. 633614-1~633614-9, 2006
[67].S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses, A. J. Heeger, M. Surin, and R. Lazzaroni, “Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films,” J. Appl. Phys., vol. 100, pp. 114503-1~114503-6, 2006
[68].S. P. Li, D. M. Russell, C. J. Newsome, T. Kugler, and T. Shimoda, “polymer transistors frabricated by painting of metallic nanoparticles,” Appl. Phys. Lett., vol.89, pp.122105-1~122105-3, 2006
[69].B. A. Mattis, P. C. Chang, and V. Subramanian, “Performance recovery and optimization of poly(3-hexylthiophene) transistors by thermal cycling,” Synthetic Metals, vol. 156, pp. 1241-1248, 2006
[70].J. R. Chan, X. Q. Huang, and A. M. Song, “Nondestructive photolithography of conducting polymer structures,” J. Appl. Phys., vol. 99, pp. 023710-1~023710-4, 2006
[71].X. Yu, S. Yu, Z. Wang, D. Ma, and Y. Han, “Metal printing with modified polymer bonding lithography,” Appl. Phys. Lett., vol. 88, 263517-1~263517-3, 2006
[72].L. A. Majewski, J. W. Kingsley, C. Balocco, and A. M. Song, “Influence of processing conditions on the stability of poly(3-hexylthiophene)-based field-effect transistors,” Appl. Phys. Lett., vol. 88, pp. 222108-1~2210-3, 2006
[73].H. Jia, S. Gowrisanker, G. K. Pant, R. M. Wallace, and B. E. Gnade, “Effect of poly(3-hexylthiophene) film thickness on organic thin film transistor properties,” J. Vac. Sci. Technol., vol. A 24, pp. 1228-1232, 2006
[74].D. H. Kim, Y. Jang, Y. D. Park, and K. Cho, “Controlled One-Dimensional Nanostructures in Poly(3-hexylthiophene) Thin Film for High-Performance Organic Field-Effect Transistors,” J. Phys. Chem. B, vol. 110, pp. 1763-15768, 2006
[75].M. Taniguchi, and T. Kawai, “Charcateristics of Electrochemical Transistors,”Mol. Cryst. Liq. Cryst., vol. 444, pp. 61-66, 2006
[76].http://en.wikipedia.org/wiki/Polythiophene
[77].http://www.sigmaaldrich.com/spectra/ftir/FTIR006687.PDF
[78].G. Tourillon, and F. Garnier, “New Electrochemically Generated Organic Conducting Polymers,” J. Electroanal Chem., vol. 135, pp.173-178, 1982
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top