跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/10 00:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡嘉偉
研究生(外文):Chia-wei Tsai
論文名稱:矽鍺雙載子電晶體射頻必v放大器
論文名稱(外文):Silicon Germanium Bipolar Transistor Radio Frequency Power Amplifier
指導教授:吳建華吳建華引用關係
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:73
中文關鍵詞:必v放大器矽鍺異質介面電晶體寬頻驅動放大器
外文關鍵詞:Power AmplifierWideBand Driver AmplifierSiGe HBT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究兩種典型的射頻放大器,一為寬頻驅動放大器,另一則為WiMAX規格射頻必v放大器。

第一部份是探討寬頻驅動放大器的設計,實現一個多重回授路徑架構實現寬頻帶驅動放大器;且分別藉由改變Kukielka架構與合適的電阻,以達成電路增益高平坦度並避免增益曲線高突現象,同時更進一步嘗試減少雜訊指數。

第二部份是探討一個針對行動式WiMAX規格設計的必v放大器,包含完整的必v放大器設計流程;並利用附加在主動偏壓電路上的線性化電容與電阻,及運用具諧波抑制的輸出匹配網路,可有效的增加電路線性度與溫度的穩定性。
Two typical kinds of RF amplifiers have been investigated in this thesis. One is the wideband driver amplifier and another is WIMAX used radio frequency power amplifier.

The first part is devoted itself onto the design of wideband driver amplifier. A wide-band driver amplifier using a multiple resistive feedback path configuration and will be fabricated. It not only procures high gain but also behaves with a smooth gain curve. It can also reduce its noise figure by changing the Kukielka configuration with appropriate resistance.

The second part is focused on the design of a radio frequency power amplifier for the mobile WiMAX applications. A design flow of power amplifier was included, and the circuit can effectively increase linearization and stability of temperature by the linearizing capacitors and resistors in the active bias circuit, and with a harmonic termination based matching network on the output terminal.
Acknowledgement …..……………………………………………………………..i
Abstract(Chinese) ………………………………………………………………ii
Abstract(English)……………………………………………………………….iii
Table of Contents ……………………………………………………………...…iv
List of Figures …………………………………………………………..…………vi
List of Tables ………………………………………………………………….x

Chapter 1 Introduction 1

1.1. Introduction …………………………………………………………………..1
1.2. Motivation …………………………………………………………………….2
1.3. Organization of the Thesis ………………………………………………...3

Chapter 2 Wideband Driver Amplifier 4

2.1. Feedback Topology ……………………………………………...……......5
2.2. Principles of Wideband Amplifier ……………………………….……...7
2.3. Principles of Noise ………………………………………………………...13
2.3.1. Thermal Noise ……………………………………………….……14
2.3.2. Shot Noise …………………………………………………………15
2.3.3. Flicker Noise ………………………………………………………15
2.3.4. Popcorn Noise ……………………………………………………16
2.4. Circuit Configuration …………………………………………………….18
2.5. Simulation and Measurement Results ………………………………..21
2.6. Summary …………………………………………………………………....29

Chapter 3 Power Amplifier 31

3.1. SiGe HBTs Technology ……………………………………………………32
3.2. Fundamentals of Power Amplifiers ……………………………………..34
3.2.1. Efficiency of Power Amplifiers …………………………………..35
3.2.2. Linearity of Power Amplifiers …………………………………....36
3.2.2.1. AM-AM and AM-PM Conversions ……………………...37
3.2.2.2. Adjacent Channel Power Ratio(ACPR)……………38
3.2.2.3. Spectral Mask ……………………………………………..38
3.2.2.4. Error Vector Magnitude(EVM)………………………..39
3.3. Overview of Classifications Power Amplifiers ……………………….41
3.3.1. Class A Power Amplifier …………………………………………..41
3.3.2. Class B Power Amplifier ………………………………………….42
3.3.3. Class AB Power Amplifier ………………………………………..44
3.3.4. Class C Power Amplifier ………………………………………….45
3.3.5. Class D Power Amplifier ………………………………………….46
3.3.6. Class E Power Amplifier ………………………………………….47
3.3.7. Class F Power Amplifier ………………………………………….48
3.4. The Design of SiGe Power Amplifier …………………………………50
3.4.1. The Active Device ………………………………………………….51
3.4.2. Operating Principle of Active Bias Linearizier Circuit ………53
3.4.3. Output Matching Network with Harmonic Termination ……..58
3.5. Simulation Results ………………………………………………………60
3.6. Measured Results ………………………………………………………..66

Chapter 4 Conclusion 68

References 70
[1]Mobile WiMAX Std. “Part I: A Technical Overview and Performance Evaluation” WiMAX Forum, Aug. 2006
[2]Mobile WiMAX Std. “Part II: A Comparative Analysis” WiMAX Forum, May, 2006.
[3]IEEE Std 802.16 2005, “Part 16: Air Interface for Fixed Broadband Wireless Access Systems” Sep. 2005.
[4]N. Gupta, A. Tombak, and A. Mortazawa, “A Varactor Diode Based Predistortion Circuit,” 2004 IEEE MTT-S Inr. Microwave Symp. Dig., vol. 2, June 2004, pp. 689-692.
[5]K. Fujita, K. Shirakawa, N. Takahashi, Y. Liu, T. Oks, M. Yamashita, K. Sakuno, H. Kawamura, M. Hasegawa, H. Koh, K. Kagoshima, H. Kijima, and H. Sato, “A 5GHz High Efficiency and Low Distortion InGaPIGaAs HBT Power Amplifier MMIC,” 2003 IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, June 2003, pp. 871-874.
[6]Y. S. Noh and C. S. Park, “PCSN-CDMA Dual-Band MMIC Power Amplifier with a Newly Proposed Linearization Bias Circuit,” IEEE J. Solid-State Circuits, vol. 37,110.9, Sept. 2002, pp. 1096-1099.
[7]W. C. Hua, H. H. Lai, P. T. Lin, C. W. Liu, T. Y. Yang, and G. K. Ma, “High-Linearity and Temperature-Insensitive 2.4 GHz SiGe Power Amplifier with Dynamic-Bias Control,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2005 IEEE 12-14, June 2005, pp 609-612.
[8]J. Kang, J. Yoon, K. Min, D. Yu, J. Nam, Y. Yang, and B Kim, “A Highly Linear and Efficient Differential CMOS Power Amplifier With Harmonic Control,” IEEE J. Solid-State Circuits, vol. 41, June 2006, pp. 1314 - 1322.
[9]R. Tayrani, “A broadband monolithic S-band class-E power amplifier,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2002 IEEE 2-4, June 2002, pp 53-56.
[10]Yi Qin, Gao Steven,A. Sambell, “Broadband high-efficiency linearly and circularly polarized active integrated antennas,” IEEE Trans. Microwave Theory and Techniques, Vol. 54, Issue 6, Part 2, June 2006, pp 2723-2732.
[11]T. Mury, V. F. Fusco, “Analysis and synthesis of pHEMT class-E amplifiers with shunt inductor including ON-state active-device resistance effects,” IEEE Trans. Circuits and Systems I: Regular Papers, Vol. 53, Issue 7, July 2006, pp 1556-1564.
[12]J. H. Kim, K. Y. Kim, S. H. Won, J. J. Lee, Y. H. Park, Y. K. Jung , S. T. Kim and C. S. Park, “Impedance Optimization of Linearizer to Suppress Intermodulation Distortion in 2.45GHz SiGe WLAN Power Amplifier,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2006 IEEE 11-13, June 2006.
[13]J. D. Kitchen, I. Deligoz, S. Kiaei and B. Bakkaloglu, “Linear RF Polar Modulated SiGe Class E and F Power Amplifiers,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2006 IEEE 11-13, June 2006.
[14]W. Bakalski, A. Vasylyev, W. Simburger, M. Kall, A. Schmid, K. Kitlinski, “A 4.8-6 GHz IEEE 802.11a WLAN SiGe-Bipolar Power Amplifier with On-chip Output Matching,” Gallium Arsenide and Other Semiconductor Application Symposium, 2005. EGAAS 2005. European 3-4 Oct. 2005, pp 481 – 483.
[15]U. R. Pfeiffer, and A. Valdes-Garcia, “Millimeter-Wave Design Considerations for Power Amplifiers in a,n SiGe Process Technology,” IEEE Tran. Microwave Theory and Techniques, vol. 54, Jan. 2006, pp57 – 64.
[16]Junxiong Deng, P. S. Gudem, L. E. Larson, and P. M. Asbeck, “A High Average-Efficiency SiGe HBT Power Amplifier for WCDMA Handset Applications,” IEEE Tran. Microwave Theory and Techniques, vol. 53, Feb 2005, pp529 – 537.
[17]J. B. Johnson, A. J. Joseph, D. C. Sheridan, R. M. Maladi, P.-O. Brandt, J. Persson, J. Andersson, A. Bjorneklett, U. Persson, F. Abasi, and L. Tilly, “Silicon-Germanium BiCMOS HBT Technology for Wireless Power Amplifier Applications,” IEEE J. Solid-State Circuits, vol. 39, Oct. 2004, pp1605 – 1614.
[18]P. D. Tseng, L. Zhang, G. B. Gao, and M. F. Chang, “A 3-V Monolithic SiGe HBT Power Amplifier for Dual-Mode (CDMA/AMPS) Cellular Handset Applications,” IEEE J. Solid-State Circuits, vol. 35, Sep. 2000, pp 1338-1344.
[19]P. Reynaert, M. Steyaert, “A 1.75GHz GSM/EDGE Polar Modulated CMOS RF Power Amplifier,” ISSSCC Dig. Tech. Papers, Feb. 2005, pp. 312-600.
[20]K.C. Tsai, and P. R. Gray, “A 1.9-GHz, 1-W CMOS Class-E Power Amplifier for Wireless Communications,” IEEE J. Solid-State Circuits, vol. 34, July 1999, pp. 962 – 970.
[21]C. Fager, J.C. Pedro, N.B. de Carvalho, H. Zirath, F. Fortes, M.J. Rosario, “A Comprehensive Analysis of IMD Behavior in RF CMOS Power Amplifiers,” IEEE J. Solid-State Circuits, vol. 39, Jan. 2004 pp. 24 – 34.
[22]K. L. R. Mertens and M. S. J. Steyaert, “A 700-MHz 1-W Fully Differential CMOS Class-E Power Amplifier,” IEEE J. Solid-State Circuits, vol. 37, Feb. 2002, pp. 137 – 141.
[23]R. G. Meyer and R. A. Blauschild, “A 4-terminal wide-band monolithic amplifier,” IEEE J. Solid-State Circuits, vol. SC-16, Dec. 1981, pp. 634–638.
[24]K. W. Kobayashi and A. K. Oki, “A DC-10 GHz high gain-low noise GaAs HBT direct-coupled amplifier,” IEEE Microwave Guided Wave Lett., vol. 5, Sept. 1995, pp. 308–310.
[25]K. W. Kobayashi, L. T. Tran, J. Cowls, T. R. Block, a. K. Oki, and D. C. Streit, “Low dc power high gain-bandwidth product InAlAs/In-GaAs–InP HBT direct-coupled amplifiers,” in Proc. IEEE GaAs IC Symp., Nov. 1996, pp. 141–144.
[26]M. C. Chiang, S. S. Lu, C. C. Meng, S. A. Yu, S. C. Yang, and Y. J. Chan, “Analysis, design and optimization of InGaP-GaAs HBT matched impedance wide-band amplifiers with multiple feedback loops,” IEEE J. Solid-State Circuits, vol. 37, no. 6, Jun. 2002 pp. 694–701.
[27]A. S. Sedra and K. C. Smith, “Microelectronic Circuits,” 4th Edith, New York, Oxford University Press, Inc., 1998.
[28]J. Lee and J. D. Cressler , “Analysis and design of an ultra-wideband low-noise amplifier using resistive feedback in SiGe HBT technology,” IEEE Trans. Microwave Theory and Techniques, vol. 54, no. 3, Mar. 2006, pp.1262-1268
[29]R. J. Baker, “COMS circuit design, layout, and simulation,” 2nd Edith, New York John Wiley, 2005
[30]T. Ytterdal, Y.Cheng, and T. A. Fjeldly, “Device Modeling for Analog and RF CMOS CirCcit Design,” New York: John Wiley, 2003
[31]T. H. Lee, “The design of CMOS Radio-Frequency Integrated Circuits,” Cambridge University Press, 1998.
[32]B. Razavi, “RF Microelectronics, 1st Edith, Prentice Hall PTR, Prentice-Hall Inc., 1998.
[33]B. Razavi, “Design of Analogy CMOS Integrated Circuits,” McGraw-Hill, Inc. International Edition 2001.
[34]SIRENZA, INC. http://www.sirenza.com/
[35]Peter Ashburn, SiGe Heterojuction Bipolar Transistors. New York, John Wiley, 2003 Cunnent
[36]N. Wongkomet, “Efficiency Enhancement Techniques for CMOS RF Power Amplifiers,” PhD. thesis, Dept. Electron. Eng., California Berkeley Univ., California, May. 2006.
[37]G. Liu, “Fully Integrated CMOS Power Amplifier,” PhD. thesis, Dept. Electron. Eng., California Berkeley Univ., California, Dec. 2006.
[38]A. Shirvani and B. A. Wooley, “Design and Control of RF Power Amplifiers,” 1st Edith, Philip, Kulwer Academic Publishers, 2003
[39]Y.S. Noh and C.S. Park, “Linearised InGaP/GaAs HBT MMIC power amplifier with active bias circuit for W-CDMA application,” IEEE Electronics Letters, vol. 37, no. 25, Dec 2001, pp. 1523 –1524.
[40]Y.S. Noh, T.W. Lee and C.S. Park, “Linearized high efficient HBT power amplifier module for L-band application,” IEEE GaAs IC Symposium, 2001, pp. 197 –200.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文