跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 08:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭文俊
研究生(外文):Wen-Chun Hsiao
論文名稱:應用於電磁微振動感測系統之相移器與混頻器設計
論文名稱(外文):Design of Phase Shifters and Mixer for Electromagnetic Micro-Motion Detection System
指導教授:張盛富
指導教授(外文):Sheng-Fuh Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:91
中文關鍵詞:混頻器相移器電磁微振動感測系統
外文關鍵詞:phase shiftermixerElectromagnetic micro-motion detection system
相關次數:
  • 被引用被引用:4
  • 點閱點閱:606
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:1
摘要:
本論文主要為研製可應用於電磁微振動感測系統之可調式相移器與I/Q降頻混頻器兩部分。在可調式相移器部份,進行三項新型架構的研究,第一,提出一個新的阻抗轉換反射式相移器架構,可以達到360°的相位調控範圍。量測結果於2 GHz頻率下,相位調控範圍可以達到407°,植入損耗為4.4±0.2 dB,輸入與輸出返回損耗皆大於19 dB。第二,提出只需單一反射負載的相移器,其使用威爾金森必v分配器,連接一個反射式負載即可完成相移器電路。量測結果於915 MHz頻率,在相位調控範圍180°需求下,植入損耗變化量只有1.6 dB,輸入與輸出返回損耗皆大於10 dB。第三,分別設計10-GHz與24-GHz雙並聯共振反射式相移器,提出一並接型反射式負載架構,並搭配使用集總元件之藍吉耦合器,在10-GHz雙並聯共振反射式相移器部分,量測結果於10 GHz頻率下,相位調控範圍有194°,植入損耗為5.1±0.2 dB,輸入與輸出返回損耗皆大於13 dB;在24-GHz雙並聯共振反射式相移器部分,量測結果於24 GHz頻率下,相位調控範圍有170°,植入損耗為5.2±0.4 dB,輸入與輸出返回損耗皆大於15 dB。第二部分設計具有主動平衡器之降頻混頻器電路,晶片內部包含I/Q兩路部分,電路架構採用主動式雙平衡混頻器,並結合具有回授機制之輸入單端轉雙端主動平衡器,量測結果於中頻訊號頻率為1 MHz之下,於本地振盪輸入訊號必v為-19 dBm時,最高差動輸出電壓轉換增益為24 dB,輸入1-dB增益壓縮點為-24 dBm,輸入二階截止點為26 dBm,輸出三階截止點為8.4 dBm,LO-RF的隔離度為43 dB。
Abstract:
This thesis investigates analog phase shifters and quadrature down mixer for electromagnetic micro-motion detection systems. On the analog phase shifter, a full 360° reflection-type hybrid phase shifter with constant insertion loss is first presented, which employs an impedance-transforming branch-line coupler with the series-resonated reflection loads. The measured results show a maximal relative phase shift of 407°, an insertion loss of 4.4±0.2 dB and return losses better than 19 dB at 2 GHz. Another CMOS reflection-type phase shifter requires only with single reflection load was presented, where Wilkinson power divider is used. The measured results at 915 MHz show an insertion-loss variation of 1.6 dB with 180° relative phase shift range, and the return losses are better than 10 dB. Third, the enhanced CMOS analog phase shifter at 10 and 24 GHz are presented, using the dual parallel-resonant structure with transformer-based Lange coupler. The measured results show a maximal relative phase shift of 194° and 170°, insertion loss of 5.1±0.2 dB and 5.2±0.4 dB, return loss better than 13 dB and 15 dB at 10 GHz and 24 GHz, respectively. The second part of this thesis designs CMOS quadrature down mixer with internal active balun. The proposed circuit uses the double-balanced Gilbert Cell mixer with single-to-differential active balun. With the intermediate frequency of 1 MHz and LO power of -19 dBm, the differential voltage gain of 24 dB, input 1-dB compression point of -24 dBm, input second-order intercept point of 26 dBm, output third-order intercept point of 8.4 dBm and LO-RF isolation of 43 dB are measured.
目錄:
第一章 緒論 1
1.1 研究背景與目的 1
1.2 論文綱要 4
第二章 低植入損耗變化之360°反射式相移器設計 7
2.1 反射式相移器介紹 7
2.2 文獻研究成果 9
2.3 電路架構與原理 10
2.4 電路設計流程 15
2.5 模擬與量測結果 17
2.6 結果討論 21
第三章 CMOS威爾金森單共振反射式相移器 23
3.1 文獻研究成果 23
3.2 電路架構與原理 24
3.3 電路設計流程 29
3.4 模擬與量測結果 32
3.5 結果討論 37
第四章 CMOS雙並聯共振反射式相移器 41
4.1 電路架構與原理 41
4.2 10-GHZ雙並聯共振反射式相移器 47
4.2.1 電路設計流程 47
4.2.2 模擬與量測結果 52
4.3 24-GHZ雙並聯共振反射式相移器 57
4.3.1 電路設計流程 57
4.3.2 模擬與量測結果 59
4.4 結果討論 63
第五章 具有主動平衡之CMOS降頻混頻器 65
5.1 降頻混頻器效能參數介紹 65
5.1.1 轉換增益 65
5.1.2 雜訊指數 66
5.1.3 增益壓縮 67
5.1.4 二階交互調變失真 67
5.1.5 三階交互調變失真 68
5.1.6 隔離度 69
5.2 電路架構與原理 69
5.3 電路設計流程 74
5.4 模擬與量測結果 77
5.5 結果討論 83
第六章 結論 85
參考文獻 87
參考文獻:
[1]D. W. Griffin, “MW interferometers for biological studies,” Microwave Journal, vol.21, pp.69-71, May 1978.
[2]H. R. Chuang, Y.F. Chen, and K. M. Chen, “Automatic clutter-canceler for microwave life-detection systems,” IEEE Trans. Instrumentation and Measurement, vol. 40, pp. 747-750, Aug. 1991.
[3]Kun-Mu Chen, Yong Huang, Jianping Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomedical Engineering, vol. 47, pp. 105-114, Jan. 2000.
[4]L.C. Ng, G.C. Burnett, J.F. Holzrichter, and T.J. Gable, “Denoising of human speech using combined acoustic and EM sensor signal processing,” in Proc. 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, 5-9 June 2000, vol. 1 , pp. 229-232.
[5]J. F. Holzrichter, G. C. Burnett, L. C. Ng, and W. A. Lea, “Speech articulator measurements using low power EM-wave sensors,” J. Acoust. Soc. Am., vol. 103, no. 1, pp. 622-627, 1998.
[6]J. F. Holzrichter, G. C. Burnett, and L. C. Ng, “Speech articulator and user gesture measurement using micropower, interferometric EM-sensors,” in IEEE Instrumentation and Measurement Technology Conference, 21-23 May 2001, pp. 1942-1946.
[7]Alphi Corp., http://www.alphi.com.
[8]J. F. Holzrichter, “New ideas for speech recognition and related technologies,” Lawrence Livermore National Labortory, UCRL-UR-120310, 1995. http://www.ntis.gov.
[9]M. Okoniewski and M.A. Stuchly, “A study of the handset antenna and human body interaction,” IEEE Trans. Microwave Theory Tech., vol. 44, pp.1855-1864, Oct. 1996.
[10]S.G. Zhu, K. M Chen, and H.R. Chuang, “Interaction of the near-zone fields of a slot on a conducting sphere with a spherical model of man,” IEEE Trans. Microwave Theory Tech., vol. 32, pp.784-795, Aug. 1984.
[11]A.D. Droitcour, O. Boric-Lubecke, V.M. Lubecke, and J. Lin, G.T.A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 838-848, March 2004.
[12]J. F. White, Microwave Semiconductor Engineering, New York:Van Nostrand Reinhold, 1982.
[13]R. V. Garver, “Broad-band diode phase shifter,” IEEE Trans. Microwave Theory Tech., vol. 20, pp. 314-323, May 1972.
[14]J. F. White, “High power, p-i-n controlled, microwave transmission phase shifter,” IEEE Trans. Microwave Theory Tech., vol. 13, pp. 233-243, March 1965.
[15]W. A. Davis, “Design equations and bandwidth of loaded-line phase shifters,” IEEE Trans. Microwave Theory Tech., vol. 22, pp. 561-563, May 1974.
[16]J. I. Upshur and B. D. Geller, “Low-loss 360° X-band analog phase shifter,” in IEEE MTT-S Int. Microwave Symp. Dig., May 1990, vol.1, pp. 487 – 490.
[17]K. O. Sun, H. J. Kim, C. C. Yen, and D. Weide, “A scalable reflective type phase shifter with large phase variation,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 647-648, Oct. 2005.
[18]F. Ellinger, R. Vogt, and W. Bächtold, “Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 913- 917, May 2001.
[19]H. Zarei and D. J. Allstot, “A low-loss phase shifter in 180 nm CMOS for multiple-antenna receivers,” in Proc. Int. Solid-State Circuits Conf., Feb. 2004, pp. 392-393.
[20]Leo G. Maloratsky, Passive RF & Microwave Integrated Circuits, Elsevier, 2004.
[21]B. T. Henoch and P. Tamm, “A 360° reflection-type diode phase modulator,” IEEE Trans. Microwave Theory Tech., vol. 19, no. 1, pp. 103-105, Jan. 1971.
[22]T. W. Yoo, J. H. Song, and M. S. Park, “360° reflective-type analogue phase shifter implemented with a single 90° branch-line coupler,” Electron. Lett., vol. 33, no. 3, pp. 224-226, Jan. 1997.
[23]徐邑豪,具低植入損耗變動與寬相位調整之射頻反射式相移器設計,國立中正大學電機工程研究所碩士論文,民國九十五年。
[24]C. S. Lin, S. F. Chang, C. C. Chang and Y. H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Microwave Theory Tech., accepted to be published in Sep. 2007.
[25]R. K. Gupta, S. E. Anderson, and W. J. Getsinger, “Impedance-transforming 3-dB 90° hybrids,” IEEE Trans. Microwave Theory Tech., vol. 35, no. 12, pp. 1303-1307, Dec. 1987.
[26]F. Ellinger, R. Vogt, and W. Bächtold, “Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining,” IEEE J. Solid- State Circuits, vol. 37, no. 4, pp. 481-486, April 2002.
[27]C. Charles and D. Allstot, “A 2-GHz integrated CMOS reflective-type phase shifter with 675° control range,” in IEEE ISCAS , 2006, pp. 381-384.
[28]D. Ozis and D. Allstot, “Analysis and design of lumped-element quadrature couplers with lossy passive elements,” in IEEE ISCAS , 2006, pp. 2317-2320.
[29]F. Ali and A. Podell, “A wide-band GaAs monolithic spiral quadrature hybrid and its circuit applications,” IEEE J. Solid- State Circuits, vol. 26, no. 10, pp. 1394-1398, Oct. 1991.
[30]R. C. Frye, S. Kapur, and R. C. Melville, “A 2-GHz quadrature hybrid implemented in CMOS technology,” IEEE J. Solid- State Circuits, vol. 38, no. 3, pp. 550-555, March 2003.
[31]K. L. Fong and R. G. Meyer, “Monolithic RF active mixer design,” IEEE Trans. on Circuits and Systems, vol. 46, no. 3, pp. 231-239, March 1999.
[32]張盛富、張嘉展,無線通訊射頻模組設計,全華科技圖書有限公司,民國九十六年。
[33]Aarno Pärssinen, Direct Conversion Receivers in Wide-Band Systems, Springer, 2001.
[34]B. Razavi, RF Microelectronics, Prentice-Hall, 1998.
[35]H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE J. Solid- State Circuits, vol. 35, no. 1, pp. 15-25, Jan. 2000.
[36]B. Gilbert, “A precise four-quadrant multiplier with subnanosecond response,” IEEE J. Solid- State Circuits, vol. 3, no. 4, pp. 365-373, Dec. 1968.
[37]M. Rajashekharaiah, P. Upadhyaya, D. Heo, and E. Chen, “A new gain controllable on-chip active balun for 5GHz direct conversion receiver,” in IEEE ISCAS , 2005, pp. 5115-5118.
[38]H. Ma, S. J. Fang, F. Lin, and H. Nakamura, “Novel active differential phase splitters in RFIC for wireless application,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2597-2603, Dec. 1998.
[39]X. Wang and R. Weber, “A novel low-voltage low-power 5.8 GHz CMOS down-conversion mixer design,” in IEEE Radio and Wireless Conf., Aug. 2003, pp. 301-304.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊