跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊志祥
研究生(外文):Zhi-Xiang Zhuang
論文名稱:多頻帶縮小化天線設計研究
論文名稱(外文):Multi-band Miniature Antenna Design
指導教授:吳建華吳建華引用關係
指導教授(外文):Janne-Wha Wu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:76
中文關鍵詞:微帶天線倒F天線手機通訊全向性場型
外文關鍵詞:micro-strip antennaPIFAhandset communicationomni-directional
相關次數:
  • 被引用被引用:0
  • 點閱點閱:707
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今手持行動裝置所使用眾多天線當中,以平面微帶天線具有體積小、重量輕、製作容易、價格低廉、可信度高、結構簡單,容易與印刷電路結合等優點,尤其在手機通訊應用上扮演著重要的角色。

緣此,本論文利用全平面正方形單極微帶天線及倒F天線架構當作設計天線的原型。提出多種不同架構的多頻帶微小化倒F天線。首先分別採用矩形繞線方式及圓形繞線方式改變原有倒F天線架構,引入適當之電感性進入原有天線結構,兩者皆可縮小天線尺寸並產生所需之雙頻效果。進一步探討製造過程影響到相關尺寸及基本參數變異時對於天線特性之影響。並且討論加入晶片電阻於結構中對於改善操作頻寬的影響。最後並探討將此改良微小化倒F天線另加入一額外的殘段,使其由雙頻操作改變為三頻操作的方法。實作結果顯示,所作之結構改良皆可以輕易設計在所需要的頻段,比起傳統倒F型天線所佔面積也可大幅縮小,且其場型也具有全向性場型的特質。


關鍵詞:微帶天線、倒F天線、手機通訊、全向性場型
Among the most common used antennas in the portable mobile devices, the planer micro-stripe antenna is the most popular one of which is small size, light in weight, easy fabrication, low cost and high reliability and especially its easy compatibility with printed circuit board. So it plays an important role in handset communication.

In this thesis, one of rectangular monopole micro-stripe antenna was used as the basis for study. Three inverted F-shaped antenna (PIFA) structures were studied for the minimization of multiple-band applications. First, both approaches of rectangular and circular spiral deformed structures were employed to minimize the antenna size and generate a dual pass-band antenna. The variations of feature size and material parameters suffered from the manufacture of the printed circuit board were investigated, too. The possibility of enlarging the operating bandwidth on the PIFA antenna was evaluated by adding one chip resistor in serial. Finally, an extra stub was appended onto the deformed rectangular spiral PIFA antenna. By this way, the flexibility of operating frequency could be easily expanded from dual bands to triple bands. All of the structures had been verified with measurement. The experimental results reveal that the desired operating frequency could be easily achieved. As compared to the traditional planar inverted F-shape antenna, such kind of deformed ones take less area on the printed circuit board. One of important figure is their radiation field pattern being omni-directional.

Keywords: micro-strip antenna, PIFA, handset communication, omni-directional
Figure Captions VIII
Table Captions XI
Abstract (in Chinese) XIII
Abstract (in English) XV

l Chapter 1 Introduction and overview 1
1.1 Introduction 1
1.2 Objectives 3
1.3 Thesis Overview 4

l Chapter 2 Basic antenna theory 5
2.1 Microstrip antenna 5
2.1.1 Introduction 5
2.1.2 Microstrip antenna theory 7
2.2 Dipole antenna 15
2.3 Monopole antenna 18
2.4 Image theory 20
2.5 Resonance definition 21

l Chapter 3 Planar inverted-F antenna 23
3.1 Evolution of PIFA antenna 22
3.2 The theory of a.planar inverted-F antenna. 25

l Chapter 4 Simulation, measurement and analysis 27
4.1 Patch antenna 28
4.2 Dual-band F-shaped Antenna 34
4.3 Dual-band miniaturized F-shaped antenna 38
4.4 Dual-band PIFA antenna 40
4.4.1 Influence with the variation of the PCB substrate thickness 49
4.4.2 Influence with the variation of the PCB copper thickness 51
4.4.3 Influence with the variation of the relative dielectric constant 52
4.4.4 Influence with the variation of the spiral trace width (S2) 53
4.4.5 Influence with the variation of the spiral gap width (S3) 54
4.4.6 Influence with the variation of .the gap between spiral trace and ground (S4) 55
4.4.7 Influence with the variation of the ground plane width (W2) 56
4.5 Dual-band deformed PIFA antenna 57
4.6 Circular spiral dual-band PIFA antenna 59
4.7 Bandwidth widening with chip resistor in a deformed dual=band PIFA antenna 60
4.8 Triple-band rectangular PIFA antenna 66
4.9 Summary 70

l Chapter 5 Conclusions 71

l References 73

l Acknowledgements 76
[1]K.Fujimoto and J.R.James, Mobile Antenna Systems Handbook, Artech House, 1994

[2]M.E Bialkowski, Wireless: From Marconi – The Way Ahead, IWTS 1997, Shah Alum, Malaysia 1997

[3]T.S. Rappaport, Wireless Communications, Principles and Practice, Prentice Hall, 1996

[4]J.D. Kraus, Antennas Since Hertz and Marconi, IEEE Transactions on Antennas and Propagation, Vol.33, No.2, Feb.1985

[5]G.A. Deschamps, "Microstrip Microwave antenna", Proc. 3rd United States Air Force Symposium on Antennas, Jun. 1953, pp. 278-284

[6]C. A. Balanis, “Antenna theory”, 2nd edition, John Wiley&Sons, Inc. 1997

[7]R. W. Dearnly and R. F. Barel, IEEE Transactions on Antennas and Propagation, Vol.37, No.1, pp.114-118, 1989

[8] Y.J. Sung and Y.-S. Kim, IEEE Transactions on Antennas and Propagation, Vol. 53, No.5, pp. 1799 – 1804, 2005

[9]J.J. Wang, Y.P. Zhang, K. M. Chua and A.C.W. Lu, IEEE Transactions on Antennas and Propagation, Vol. 53, No.12, pp. 3877 – 3883, 2005

[10]D. Yoharaaj, R. S. Azmir and A. Ismail, International RF and Microwave Conference, 2006, pp. 205 – 209, 12-14 Sept. 2006

[11]S.J. Weiss and W.K. Kahn, IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No.8, pp.1513-1516, 1996

[12]D.M. Pozar, Proceedings of the IEEE, Vol.80, No.1, pp.79 - 91, 1992

[13]C. A. Balanis, “Advanced Engineering Electromagnetics”, John Wiley&Sons, Inc. 1989

[14]C. A. Balanis, “Antenna Theory Analysis and Design”, John Wiley&Sons, Inc. 1992

[15]T. Taga, “Analysis, Design, and Measurement of Small and Low Profile Antennas”, K. Hirasawa and M. Haneishi, Artech House, 1992

[16]R. Sauleau and B. Bares, IEEE Transactions on Antennas and Propagation, Vol. 54, No.4, pp. 1122 – 1133, 2006

[17]M.C. Huynh and W. Stutzman, IEE Proceedings of Microwaves, Antennas and Propagation, Vol. 150, No.4, pp. 209 – 213, 2003

[18]Y.S. Wang, M.C. Lee and S.J. Chung, IEEE Transactions on Antennas and Propagation, Vol. 55, No.3, pp. 805 – 811, 2007

[19]S. Yarasi, G.R. Kadambi and T. Hebron, IEEE Antennas and Propagation Society International Symposium, 2003, Vol. 3, pp. 22 – 27, 2003

[20]S.T. Fang, S.H. Yeh and K.L. Wong, IEEE Antennas and Propagation Society International Symposium, 2002, Vol. 4, pp. 524 – 527, 2002

[21] D. R. Jackson and N. G. Alexopoulos, IEEE Transactions on Antennas and Propagation, Vol. 39, No.3, pp. 407 – 410, 1991

[22]D.R. Jackson and N.G. Alexopoulos, Antennas and Propagation Society International Symposium, 1989, Vol. 2, pp. 1130 – 1133, 1989

[23]B. Lindmark, IEEE Aerospace Conference, 1998, Vol. 3, pp. 21 – 28, 1998

[24]Zhinong Ying, IEE Wideband and Multi-band Antennas and Arrays Symposium, 2005 pp. 1 – 5, 2005

[25]Z.D. Liu, P.S. Hall and D. Wake, IEEE Transactions on Antennas and Propagation, Vol. 45, No.10, pp. 1451 – 1458, 1997

[26]S.E. Slawson and S.A. Long, Antennas and Propagation Society International Symposium, 1988, Vol. 2, pp. 704 – 707, 1988

[27]C.Y. Huang, C.W. Ling and J.-S. Kuo, IEE Proceedings of Microwaves, Antennas and Propagation, Vol. 150, No.6, pp. 401 – 404, 2003

[28]S.E. Davidson, S.A. Long and W.F. , Richards, Electronics Letters, Vol. 21, No.20, pp. 936-937, 1985

[29]H. Peng, J. Zhao, and Q. Liu, Electronics Letters, Vol. 41, No.19, pp. 1040-1041, 2005

[30]A. Vallecchi, G.B. Gentili and M. Calamia, IEEE Antennas and Propagation Society International Symposium, 2003, Vol. 4, pp. 134 – 137, 2003
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top