|
[1]R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory, vol. IT-18, pp. 21-28, Jan. 1962. [2]R. G. Gallager, Low-Density Parity Check Codes, Cambridge, MA: MIT Press, 1963. [3]R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. IT-27, pp. 533–547, Sept. 1981. [4]D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett., vol. 32, no. 18, pp. 1645–1646, 1996. [5]M. C. Davey and D. J. C. MacKay, “Low density parity check codes over GF(q) ,” IEEE Commun. Lett., vol. 2, pp. 165–167, June 1998. [6]D. J. C. MacKay, “Gallager codes that are better than turbo codes,” in Proc. 36th Allerton Conf. Communication, Control, and Computing, Monticello, IL, Sept. 1998. [7] , “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inform. Theory, vol. 45, pp. 399–432, Mar. 1999. [8] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular codes,” IEEE Trans. Inform. Theory, vol. 47, pp.619–637, Feb. 2001. [9] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599–618, Feb. 2001. [10]R. M. Tanner, “A [155,64,20] sparse graph (LDPC) code,” in Proc. IEEE International Symposium on Information Theory, Sorrento, Italy, June 2000. [11]R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, “LDPC block and convolutional codes based on circulant matrices,” IEEE Trans. Inform. Theory, vol. 50, pp. 2966-2984, Dec. 2004. [12]Y. Kou, S. Lin, and M. Fossorier, “Low density parity check codes based on finite geometries: A rediscovery,” in Proc. 2000 IEEE Int. Symp. In¬formation Theory, Sorrento, Italy, June 25–30, 2000. [13] , “Construction of low density parity check codes: A geometric ap¬proach,” in Proc. 2nd Int. Symp. Turbo Codes and Related Topics, Brest, France, Sept. 4–7, 2000, pp. 137–140. [14]K. Kou, S. Lin, and M. Fossorier, “Low density parity check codes based on finite geometries: A rediscovery and new results,” IEEE Trans. Inform. Theory, vol. 47, pp.2711-2736, Nov. 2001. [15]J. Rosenthal and P. O. Vontobel, “Construction of LDPC codes using Ramanujam graphs and ideas from Margulis,” in Proc. 38th Allerton Conf. Communications, Control, and Computing, Monticello, IL, Oct. 2000, pp. 248-257. [16]R. M. Tanner, “On quasi-cyclic repeat accumulate codes,” in Proc. 37th Allerton Conf. Communications, Control, and Computing, Monticello, IL, Oct. 1999, pp. 249-259. [17]M. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant permutation matrices,” IEEE Trans. Inform. Theory, to be published. [18]J. L. Fan, “Array codes as low-density parity check codes,” in Proc. 2nd Int. Symp. Turbo codes and Related Topics, Brest, France, Sept. 2000, pp. 543-546. [19]F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum–product algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp. 498–519, Feb. 2001. [20]M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low density parity check codes,” IEEE Trans. Commun., vol. 47, pp. 673–680, May 1999. [21]R. Lucas, M. Fossorier, Y. Kou, and S. Lin, “Iterative decoding of one-step majority logic decodable codes based on belief propagation,” IEEE Trans. Commun., vol. 48, pp. 931–937, June 2000. [22]D. J. C. Mackay, http://wol.ra.phy.cam.ac.uk/mackay. [23]W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, 2nd ed. Cambridge, MA: MIT Press, 1972. [24]S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983. [25]J. L. Massey, Threshold Decoding. Cambridge, MA: MIT Press, 1963. [26]V. D. Kolesnik, “Probability decoding of majority codes,” Probl. Pered. Inform., vol. 7, pp. 3–12, July 1971. [27]N. Wiberg, Codes and Decoding on General Graphs. PhD thesis, University of Linkoping, Sweeden, 1996. [28]E. Eleftheriou and S. Ölçer, “Low-density parity-check codes for digital subscriber lines,” Proc. 2002 Int. Conf. on Comm., pp.1752-1757., April-May, 2002. [29]B. Vasic, “Combinatorial constructions of low-density parity-check codes for iterative decoding,” Proc. 2002 IEEE Int. Symp. Inf. Theory, p.312, June/July 2002. [30]S. Johnson and S. Weller, “Construction of low-density parity-check codes from Kirkman triple systems,”Proc. 2001 IEEE GlobeCom Conf., pp. 970-974, Nov. 2001, [31]R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured LDPC codes,” in Proc. 6th Int. Symp. Commun. Theory and Applications, Ambleside, UK, July, 15-20 2001, pp. 365-370. [32]Dengsheng Lin, Qiang Li, Shaoqian Li, “Semi-random Construction of Quasi-Cyclic LDPC Codes,” Communications, Circuits and Systems, 2005. Proceedings. 2005 International Conference on Volume1, 27-30 May 2005 Page(s):9-13 Vol. 1. [33]G. C. Clark, Jr. and J. B. Cain, Error-correction coding for digital communications, Plenum Press, New York, 1981.
|