跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:溫國俊
研究生(外文):GuoJun Wen
論文名稱:應用於直序列展頻超寬頻無線系統之霍普菲爾網路多用戶偵測技術
論文名稱(外文):Hopfield Neural Network Multiuser Detection for DS-UWB Systems
指導教授:溫志宏溫志宏引用關係
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:63
中文關鍵詞:退火
外文關鍵詞:Hopfield Neural NetworkAnnealing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:521
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於無線通訊的迅速發展,漸漸地在日常生活中佔了一席之地。隨著使用者數目的增加以及傳輸品質的要求,對於高速率傳輸的無線通訊系統也日與劇增,因此,也發展出相當多的無線通訊系統,如:超寬頻(UWB)系統、802.11/a/b/g、無線寬頻接取業務(WiMax)、正交分頻多工(OFDM)系統、多輸入多輸出之正交分頻多工(MIMO-OFDM)系統,其中的超寬頻技術由於在室內具有高傳輸的技術而備受矚目,此外,超寬頻系統同時也具有低生產成本、低干擾、低必v消耗以及精確的定位能力。
本篇論文旨在探討直序展頻技術的超寬頻系統之多用戶偵測。由於直序展頻技術的超寬頻系統主要是應用在室內的無線傳輸,因此難免會受到室內障礙物的阻擋而造成多路徑干擾,為了有效率地克服多路徑干擾的問題,我們採用了最大組合耙型接收器。此外,隨著使用者數目的增加,多用戶直序超寬頻系統也引起嚴重的多用戶干擾,所以我們便採用了匹配濾波器去匹配出每位使用者的位元資訊。從理論分析與模擬中,我們得知最大相似度多用戶偵測器可以提供最佳的效能,然而最大相似度多用戶偵測器的運算複雜度會隨著使用者成指數成長。最小均方誤差多用戶偵測器和解相關性多用戶偵測器也提供了次佳的效能,但是它們相關性矩陣的反矩陣並不容易在硬體上實現。
因此我們採用了可近似最大相似度的霍普菲爾類神經網路來降低最大相似度多用戶偵測器的複雜度,然而傳統的霍普菲爾類神經網路容易進入局部最小值。為了改善局部最小值的問題,我們採用了一種名叫模擬退火演算法的最佳化方法應用於霍普菲爾類神經網路中,此最佳化方法可以避免陷入局部而獲得全域的最小值。從實驗結果,在直序展頻技術的超寬頻系統中,使用退火霍普菲爾類神經網路偵測器可以得到不錯的性能,而且在硬體上也容易實現。
Recently, wireless communications are more momentous in daily life as a result of their fast development. With the increasing number of users and the request of transmission quality, wireless systems with high transmission rate increase gradually; therefore, many wireless techniques are developed, such as ultra-wide band (UWB) systems, IEEE 802.11a/b/g, worldwide interoperability for microwave access (WiMax), orthogonal frequency-division multiplexing (OFDM), multiple-input multiple-output OFDM (MIMO-OFDM). Among these techniques, UWB systems attract many attentions due to their high transmission rate for indoor environment, low implementation cost, low interference, low power consumption and precise positioning capability.
The main idea of this thesis is to discuss the multiuser detections of direct sequence-UWB (DS-UWB) systems. The DS-UWB systems are mainly applied in the wireless transmission of indoor environment in which are many obstacles to cause serious multipath interference. In order to overcome the problems of multipath interference efficiently, we adopted the maximal ratio combining (MRC) Rake receiver. Besides, with the increasing number of users, the multiuser DS-UWB systems will cause serious multiuser interference. Consequently, we adopted matched filter to match bit information of each user. According to theoretical analyses and simulations, we know that the multiuser detector with maximum likelihood (ML) estimation can provide the best performance. On the other hand, its computational complexity will grow exponentially with the number of the users. The multiuser detectors that employ decorrelating and minimum mean square error (MMSE) can give the suboptimal performance; however, the structure of hardwire is hard to be implemented as a result of inverse matrix of their crosscorrelation matrix R.
Hence, we adopted the Hopfield neural network (HNN) that can be approximated to maximum likelihood estimation for DS-UWB system. However, the conventional HNN algorithm can converge easily to partial minimum. In order to improve this problem, we proposed modified HNN based on simulated annealing (SA) method which can avoid local minimum and obtain global minimum. From simulation results, the HNN detector based on SA method can provide an attractive performance and be implemented easily on hardware in the multiuser DS-UWB systems.
Contents

Acknowledgments i

Abstract in Chinese ii
Abstract in English iv

Contents…. vi

List of Figures and Tables viii
Figures viii
Tables ix

Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Organization of Thesis 3

Chapter 2 Multiuser Detection for DS-UWB Systems 4
2.1 System Overview 4
2.2 System Model 5
2.2.1 Transmitter Model 5
2.2.2 Multipath Channel Model 6
2.3 Receiver Architecture 6
2.3.1 Conventional Detector 7
2.3.2 Decorrelating Detector 9
2.3.3 Minimum Mean Square Error Detector 10
2.3.4 Maximum Likelihood Detector 11
2.4 Simulation Results and Discussions 12

Chapter 3 Multiuser Detection Using Hopfield Neural Network for DS-UWB Systems 20
3.1 Introduction to Hopfield Neural Network 20
3.2 Hopfield Neural Network Detector 25
3.3 Simulation Results and Discussions 28

Chapter 4 Multiuser Detection Using Simulated Annealing Hopfield Neural Network for DS-UWB Systems 35
4.1 Introduction to Simulated Annealing Algorithm 35
4.2 Simulated Annealing Hopfield Neural Network Detector 38
4.3 Simulation Results and Discussions 41

Chapter 5 Conclusions 45
5.1 Conclusions 45
5.2 Future Work 46

Appendix A 47
Appendix B 49
Appendix C 51

References.. 53
References

[1].M. Ghavami, L. B. Michael and R. Kohno, Ultra Wideband Signals and Systems in Communication Engineering, John Wiley & Sons, New Jersey, May 2004.
[2].H. E. Gamal and E. Geraniotis, “Iterative multiuser detection for coded CDMA signals in AWGN and fading channels,” IEEE J. Sel. Areas Commun., vol. 18, no. 1, pp. 30-41, Jan. 2000.
[3].Y. Wang, Z. Du, L. Gao and W. Wu, “Performance analysis of MMSE multiuser detection,” Proc. IEEE International Conf. Commun. Techn., vol. 2, pp. 1341-1346, Aug. 2000.
[4].P. B. Rapajic and D. K. Borah, “Adaptive MMSE maximum likelihood CDMA multiuser detection,” IEEE J. Sel. Areas Commun., vol. 17, no. 12, pp. 2110-2122, Dec. 1999.
[5].S. Verdu, Multiuser Detection, Cambridge Univ. Press, 1998.
[6].B. Aazhang, B. Paris and G. C. Orsak, “Neural network for multiuser detection in code-division multi-access communications,” IEEE Trans. Commun., vol. 40, no. 7, pp. 1212-1222, Jul. 1992.
[7].U. Mitra and H. V. Poor, “Neural network techniques for adaptive multiuser demodulation,” IEEE J. Sel. Areas Commun., vol. 12, no. 9, pp. 1460-1470, Dec. 1994.
[8].G. Jeney and J. Levendovszky, “Stochastic hopfield network for multiuser detection,” European Conf. Wireless Techn., pp. 147-150, 2000.
[9].W.G. Teich and M. Seil, “Code division multiple access communication: multi-user detection based on a recurrent structure,” IEEE Trans. Veh. Techn., vol. 46, pp. 979-984, Jul. 1996.
[10].Y. C. Yoon and R. Kohno, “Optimum multi-user detection in ultra-wideband (UWB) multiple-access communication systems,” Proc. IEEE International Conf. Commun., vol. 2, pp. 812-816, Apr. 28- May 2, 2002.
[11].G. I. Kechriotis and E. S. Manolakos, “Hopfield neural network implementation of the optimal CDMA multiuser detector,” IEEE Trans. Neural Networks, vol. 7, no. 1, pp. 131-141, Jan. 1996.
[12].W. Y. Yang, W. Cao, T. S. Chung and J. Morris, Applied Numerical Methods Using MATLAB, John Wiley & Sons, Inc., 2005.
[13].J. G. Proakis, Digital Communications, 4th ed., McGraw-Hill, New York, 2001.
[14].S. Haykin, Communication Systems, 4th ed., John Wiley & Sons, Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 2001.
[15].A. A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Sel. Areas Commun., vol. 5, no. 2, pp. 128-137, Feb. 1987.
[16].S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, PTR Prentice Hall International, Inc., Englewood Cliffs, New Jersey, 1993.
[17].J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci., vol. 79, pp. 2554-2558, Apr. 1982.
[18].N. Ansari and E. Hou, Computational Intelligence for Optimization, Kluwer Academic Publisher, Norwell, 1997.
[19].M. P. Vecchi and S. Kickpatrict, “Global wiring by simulated annealing,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 2, no. 4, pp. 215-222, Oct. 1983.
[20].G. Lindfield and J. Penny, Numerical Methods Using MATLAB, 2nd ed., Prentice Hall, Upper Saddle River, New Jersey, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文