跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 15:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭文翔
研究生(外文):Wen-hsiang Cheng
論文名稱:微機電感測器嵌入模仁應用於射出成型之溫度監控
論文名稱(外文):Embedded MEMS Microsensors in Core and Cavity forTemperature Monitoring of Injection Molding Process
指導教授:羅仁權羅仁權引用關係
指導教授(外文):Ren C. Luo
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:88
中文關鍵詞:微機電系統射出成型系統嵌入溫度感測器
外文關鍵詞:Micro Electro Mechanical System (MEMS)Embedded Temperature SensorInjection Molding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:745
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
射出成型技術是最廣泛用於工業塑膠加工的方法。傳統射出成型品質不易控制,其困難在於改變射出成品品質的因素太多,如溫度、壓力、 保壓切換、塑料特性等等,任何一項因素的小小改變,都可能會導致射出產品的失敗,使得射出成型工程師常常為了調校射出機最佳的參數而大費周章。為了解決上述問題,必須發展具有線上監控系統並能調整適當參數的射出成型機。
本論文研究的目的在於發展『微機電感測器嵌入模仁應用於射出成型之溫度監控』,以便實際感測模具之模仁(core and cavity)溫度,再將感測得知的訊號回授到射出成型機的控制器,以達到最佳化控制射出成型參數,提高產品良率及品質。微機電感測器較傳統感測器,具有體積小、響應速度快的優點,有利於我們嵌入溫度感測器於模具內部。因此我們利用現有的半導體製程技術,製作新型之微機電溫度感測器,經溫度校正過後可使得量測更精準。於內文中有詳述嵌入微機電感測器過程及方法,以便為了可實際即時量測射出成型過程。在量測的過程中,我們同時也嵌入Kislter感測器(6195A),同時比較量測結果,以確保量測溫度的精準度。此論文中所嵌入的方式為非接觸模流式的嵌入法,並推導熱傳公式修正誤差,精密的量測到射料的溫度,在模具裡的分布情形。檢測所得的資訊可以回授到射出成型機上,作為適當調整所需的參數依據,以達到自動化控制射出成型之溫度,可大量減少成品的不良率並增進成品的品質和精確度。

針對量測模仁於射出成型時的溫度變化問題,本論文藉由模流軟體(Moldflow)及實驗量測數據來比較模擬溫度與實際溫度的差異性,並驗證是否能實現溫度感測器於射出成型之線上監控,以幫助塑膠模具業者提升競爭力。
Traditional approaches that adjust injection molding parameters are either by manual from the engineer’s experience or by experiments try and errors. Engineers should spend a long time on the adjustment for a set of parameters (pressure, temperature, etc.) suitable for the material and mold. For this reason, an on-line monitoring system is necessary to be developed for adjusting the optimal parameters in the manufacturing process.
The objectives of this thesis are to develop MEMS based microsensors for monitoring temperature inside core and cavity of intelligent mold. MEMS based microsensors are robust, versatile and easy to use for laboratory and industrial experiments. Therefore, the microsensors can provide accurate temperature measurement for on-line monitoring the temperature of the mold’s core and cavity. We have successfully designed and fabricated the MEMS-based temperature sensor, which can make accurate temperature measurement after calibration. During the direct rapid tooling process, the micro temperature sensor has been embedded into the core and cavity of the injection mold. The embedded temperature sensor can measure the local temperature variation during the injection, holding and cooling process. For calibrating the micro temperature sensor ,a commercial temperature sensor (6195A, Kistler) was attached to the injection mold. Temperature field modeling has been performed using the Moldflow software, and the simulation results during injection molding process are discussed. The MEMS-based microsensors can improve the problems of existing temperature sensors embed in the mold.
The differentiations of simulate data and factual data are proofed the on-line monitor accomplishment using MEMS-based temperature microsensors embed in the mold. It will improve industrial competition in injection molding field.
中文摘要 I
Abstract III
誌 謝 IV
Table of Contents VI
List of Figures VIII
List of Tables XI
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Objectives 2
1.3 Injection Molding Process Control 3
1.3.1 Injection Molding Machine 4
1.3.2 Phases of Injection Molding Machine 6
1.4 Micro-Electro-Mechanical System 7
1.5 Thesis Organization 9
Chapter 2 Literatures Review 11
2.1 On-line Monitoring of the Injection Molding Process Automation 11
2.1.1 Traditional Sensor System 11
2.1.2 On-line Ultrasonic Monitoring 13
2.1.3 A Process Monitoring and Control System 16
2.1.4 Kistler Embedded Pressure and Temperature System 17
2.1.3 Temperature Measurements of Injected Thermoplastic Parts 21
2.2 MEMS-Based Micro Sensor 22
2.2.1 Micro Pressure Sensor System 22
2.2.2 Micro Temperature Sensor System 26
Chapter 3 Design and Fabrication of the Micro Temperature Sensors 34
3.1 Characteristics of Micro Temperature Sensors 34
3.2 Experimental Equipments 36
3.2.1 Process Equipments 36
3.2.2 Calibration Equipments 41
3.3 Fabrication Process 43
3.3.1 Mask Design 44
3.3.2 Wafer Clean Process 47
3.3.3 Deposition Process 48
3.3.4 Ion Implantation and Annealing Process 48
3.3.5 Photolithography and Etching Process 49
3.3.6 Photolithography, Metal Sputtering and Lift-off 52
3.3.7 Dicing and Wire Bonding 56
Chapter 4 Core and Cavity with Embedded Sensors 58
4.1 The Process of Embedded Sensors 58
4.2 The Architecture of Experimental Setting 63
4.2.1 Operation of Injection Molding Machine 65
4.3 Simulations of the Embedded Sensors in the Mold 66
4.4 Temperature Field Modeling 67
Chapter 5 Experimental Results 72
5.1 Embed MEMS-Based Microsensors in Core and Cavity 72
5.2 Simulations of Moldflow during Injection Molding Process 77
5.3 Temperature Monitoring of Injection Molding Process 79
5.4 Computed vs. Experiment Results 82
Chapter 6 Conclusions and Contributions 83
References 85
[1]R. C. Luo, and O. Chen, “MEMS Based Thin Film Pressure/Temperature Sensor for On-line Monitoring Injection Molding,” IEEE Conference on Industrial Electronics Society, Vol. 3, pp. 1306-1309, 1998.
[2]X. C. Li, A. Gobias, and F. Prinz, “Shape Deposition Manufacturing of smart metallic structures with embedded sensors,” Proceedings of the SPIE, 2000.
[3]H. Potente, J. Wortberg, D. Hannmg, and J. Hausler, “Process Monitoring In Plastics Processing: Critical Observations,” Proceedings of the ANTEC, pp. 579, 1993.
[4]S. Kameoka, N. Haramoto, and T. Sakai, “Development of an Expert System for Injection Molding Operations, Advances in Polymer Technology,” Vol. 12, pp. 403, 1993.
[5]P. J. Blyskal, and P. J.Meheran, “Applying DOE Analysis Techniques to the Injection Molding Process,” Proceedings of the ANTEC, pp. 729, 1994.
[6]O. Vaatainen, P. Jarvela, K. Yalta, and P. JarveLa, “The Effect of Processing Parameters on the Quality of Injection Moulded Parts, Plastics, Rubber and Composites Processing and Applications,” Vol. 21, pp. 211, 1994.
[7]O. Stephan, P. Alexandra, and J. B. D. Christopher, “A Process Monitoring and Control System for Injection Molding Using Nozzle-based Pressure and Temperature Sensors,” Proceedings of the ANTEC, 1998.
[8]J. Dininger, “Three Critical Measurements on Injection Molding Processes,” IEEE Conference on the Rubber and Plastics Industry, pp. 51-56, 1994.
[9]J. H. Dubois, and W. I. Pribble, “Plastics Mold Engineering Handbook,” 1987.
[10]Y. Farouq, C. Nicolazo, A. Sarda, and R. Deterre, “Temperature measurements in the depth and at the surface of injected thermoplastic parts,” Measurement, Vol. 38, pp 1-14, 2005
[11]http://www.memsnet.org/mems/what-is.html
[12]V. R. Donald, and V. R. Dominck, “Injection Molding Handbook,” Second Edition, 1995.
[13]H. Wang, B. Cao, C. K. Jen, K. T. Nguyen, and M. Viens, “On-Line Ultrasonic Monitoring of the Injection Molding Process,” IEEE Conference on ConPolymer Engineering and Science, 1997.
[14]W. M. D. Wright, and D. A. Hutchins, “Monitoring of Binder Removal from Injection Molding Ceramics Using Air coupled Ultrasound at High Temperature Ultrasonics,” IEEE Transaction on Ferroelectrics and Frequency Control, Vol. 463, pp. 647-653, 1999.
[15]O. Stephan, P. Alexandre, and J. B. D. Christopher, “A process Monitoring and Control System for Injection Molding Using Nozzle-Based Pressure and Temperature Sensors,” Proceedings of ANTEC, 1998.
[16]D. Delaunay,“Heat transfer in polymer processing, a difficult but necessary mastery,” Edizioni ETS, Third European thermal Sciences Conference, pp. 17–28, 2000.
[17]H.T. Kim, E.A. Collins, Polym. Eng. Sci., Vol.11, No.83, 1971.
[18]S.G. Philipon, The`se sur, Etude nume´rique des phe´nome`nes thermome´-caniques durant la phase de remplissage, Fe´vrier, Ecole Nationale Supe´rieure des Mines de Paris, 1989.
[19]W. Schlaffer, J. Scijf, H. Janeschitz-Kriegl, Plast. Polym., Vol.193, 1971.
[20]S.M. Dinh, R.C. Armstrong, AIChe J., Vol.28, No.295, 1982.
[21]T.J Lindt, Polym. Eng. Sci., Vol.29, No. 471, 1989.
[22]G.-Y. Lai, J.X. Rietveld, “Role of polymer transparency and temperature gradients in the quantitative measurement of process stream temperature during injection molding via IR pyrometry,” Polym. Eng. Sci., Vol.26, No.13, 1996.
[23]C. Maier, “Infrared temperature measurement of polymer,” Polym. Eng. Sci., Vol.36 (No11), 1995.
[24]Ph. Le Bot, Comportement thermique des semi-cristallins injecte´s. Application a` la pre´diction des retraits, The`se Universite´ de Nantes, 1998.
[25]D. Debey, R. Bluhm, N. Habets, H. Kurz, “Fabrication of planar thermocouples for real-time measurements of temperature profiles in polymer melts,” Sensors Actuators A 58, pp.179–184, 1997.
[26]K. E. Peterson, “Silicon as a mechanical Material,” Proceeding of the IEEE, Vol. 70, pp. 420-457, 1982.
[27]H. Guckel, and D. Burns, “Planar Processed Polysilicon Sealed Cavities for Pressure Transducers Array,” IEEE Conference on IEDM, pp. 223-225, 1984.
[28]G. S. Chung, “Novel Pressure Sensors with Multilayer SOI Structure,” IEEE Conference on Electronics Letters, Vol. 26, pp. 775-777, 1990.
[29]S. Susumu, and K. Shimaoka, “Surface Micromachined Micro-Diaphragm Pressure Sensors,” Conference on Solid-State Sensors and Actuators, pp. 188-191, 1991.
[30]J. Fukang, “A Flexible MEMS Technology and Its First Application to Shear Stress Sensor Skin,” IEEE Proceedings of MEMS, pp. 465-470, 1997.
[31]E. Kalvesten, “The First Surface Micromachined Pressure Sensor for Cardiovascular Pressure Measurements,” IEEE Proceedings of MEMS, pp.574-579, 1998.
[32]T. Shiosaki, “Growth and Application of Piezoelectric and Ferroelectric Thin films,” IEEE Conference on Ultrasonics Symposium, pp. 537-546, 1990.
[33]S. M. Sze, “Semiconductor Sensors,” John Wiley and Sons, New York, 1994.
[34]C. Cristalli, and M. R. Neuman, “A Capacitive Pressure Sensor for Measurement of Interfacial Pressure Between a Sphygmomanometer Cuff and Arm,” Conference on Engineering in Medicine and Biology Society, Vol. 2, pp. 1541-1542, 1995.
[35]S. M. Sze, “Semiconductor Sensors,” John Wiley and Sons, New York, pp. 357-358, 1994.
[36]http://www.w-dhave.inet.co.th/Thermocouple.html
[37]http://www.rdfcorp.com
[38]W. M. Bullis, F. H. Brewer, C. D. Kolstad, and J. Swartzendruber, “Temperature Coefficient of Resistivity of Silicon Germanium near Room Temperature,” Conference on Solid-State Electronics, Vol.11, pp. 639-646, 1968.
[39]H. F. Wolf, “Silicon Semiconductor Data,” Signetics Corporation, New York, pp.45-56, 1978.
[40]N. C. C. Lu, L. Gerzberg, and J. D. Meindl, “A Quantitative Model of The Effect of Grain Size on the Resistivity of Polycrystalline Silicon Resistors,” IEEE Electron Device Letters, Vol. EDL-1, pp. 38-41, 1980.
[41]E. Obermeier, and P. Kopystynski, “Polysilicon as A Material for Microsensor Applications,” Conference on Sensors and Actuators, pp. 149-155, 1992.
[42]J. B. Huang, C.M. Ho, F. Jiang, and Y. C. Tai, “Dynamic Behavior and Application of Micro Sensors with Negative Temperature Coefficient,” IEEE Conference on Instrumentation and Measurement Technology, Vol. 2, pp. 1191-1194, 1996.
[43]S. Wu, J. Mai, Y. Zohar, Y. C. Tai, and C. M. Ho, “A Suspended Microchannel with Integrated Temperature Sensors for High-Pressure Flow Studies,” IEEE Proceedings of the Eleventh Annual International Workshop (MEMS), pp. 87-92, 1998.
[44]Z. Bendekovic, P. Biljanovic, and D. Grgee, “Polysilicon Temperature Sensor,” Conference on Electro technical (MELECON), Vol. 1, pp. 362- 366, 1998.
[45]R. H. Liu, “Research and Development of Micro Temperature Sensors,” Ph.D. Thesis, National Cheng Kung University, Taiwan, 1999.
[46]H. R. Chen, “Design and Fabrication of the Microchannel System for Thermal Fluid Study,” Ph.D. Thesis, National Cheng Kung University, Taiwan, 2001.
[47]C. H. Shen, and C. Gau, “Thermal Chip Fabrication with Arrays of Sensors and Heaters for Micro-Scale Impingement Cooling Heat Transfer Analysis and Measurements,” Conference on Biosensors and Bioelectronics, 2004.
[48]R. R. Tummala, E.J. Rymaszewski, and A. G. Klopfenstein, “Microelectronics Packaging Handbook,” Chapman & Hall, New York, 1997.
[49]http://www.kistler.com/do.productfinder.tw.en-tw?content=13_Productfinder¶m=App.6195A0%2C4
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top